Prospective derivation of a clinical decision rule for thoracolumbar spine evaluation after blunt trauma: An American Association for the Surgery of Trauma Multi-Institutional Trials Group Study

Unlike the cervical spine (C-spine), where National Emergency X-Radiography Utilization Study (NEXUS) and the Canadian C-spine Rules can be used, evidence-based thoracolumbar spine (TL-spine) clearance guidelines do not exist. The aim of this study was to develop a clinical decision rule for evaluat...

Full description

Saved in:
Bibliographic Details
Published inThe journal of trauma and acute care surgery Vol. 78; no. 3; p. 459
Main Authors Inaba, Kenji, Nosanov, Lauren, Menaker, Jay, Bosarge, Patrick, Williams, Lashonda, Turay, David, Cachecho, Riad, de Moya, Marc, Bukur, Marko, Carl, Jordan, Kobayashi, Leslie, Kaminski, Stephen, Beekley, Alec, Gomez, Mario, Skiada, Dimitra
Format Journal Article
LanguageEnglish
Published United States 01.03.2015
Subjects
Online AccessGet more information

Cover

Loading…
More Information
Summary:Unlike the cervical spine (C-spine), where National Emergency X-Radiography Utilization Study (NEXUS) and the Canadian C-spine Rules can be used, evidence-based thoracolumbar spine (TL-spine) clearance guidelines do not exist. The aim of this study was to develop a clinical decision rule for evaluating the TL-spine after injury. Adult (≥15 years) blunt trauma patients were prospectively enrolled at 13 US trauma centers (January 2012 to January 2014). Exclusion criteria included the following: C-spine injury with neurologic deficit, preexisting paraplegia/tetraplegia, and unevaluable examination. Remaining evaluable patients underwent TL-spine imaging and were followed up to discharge. The primary end point was a clinically significant TL-spine injury requiring TL-spine orthoses or surgical stabilization. Regression techniques were used to develop a clinical decision rule. Decision rule performance in identifying clinically significant fractures was tested. Of 12,479 patients screened, 3,065 (24.6%) met inclusion criteria (mean [SD] age, 43.5 [19.8] years [range, 15-103 years]; male sex, 66.3%; mean [SD] Injury Severity Score [ISS], 8.8 [7.5]). The majority underwent computed tomography (93.3%), 6.3% only plain films, and 0.2% magnetic resonance imaging exclusively. TL-spine injury was identified in 499 patients (16.3%), of which 264 (8.6%) were clinically significant (29.2% surgery, 70.8% TL-spine orthosis). The majority was AO Type A1 282 (56.5%), followed by 67 (13.4%) A3, 43 (8.6%) B2, and 32 (6.4%) A4 injuries. The predictive ability of clinical examination (pain, midline tenderness, deformity, neurologic deficit), age, and mechanism was examined; positive clinical examination finding resulted in a sensitivity of 78.4% and a specificity of 72.9%. Addition of age of 60 years or older and high-risk mechanism (fall, crush, motor vehicle crash with ejection/rollover, unenclosed vehicle crash, auto vs. pedestrian) increased sensitivity to 98.9% with specificity of 29.0% for clinically significant injuries and 100.0% sensitivity and 27.3% specificity for injuries requiring surgery. Clinical examination alone is insufficient for determining the need for imaging in evaluable patients at risk of TL-spine injury. Addition of age and high-risk mechanism results in a clinical decision-making rule with a sensitivity of 98.9% for clinically significant injuries. Diagnostic test, level III.
ISSN:2163-0763
DOI:10.1097/TA.0000000000000560