Molecular copper catalysts for electro-reductive homocoupling of CO2 towards C2 compounds
The electrochemical CO2 reduction reaction (eCO2RR) to multi-carbon products holds the potential to generate valuable building blocks for production of chemicals using renewable electricity, thereby diminishing the dependence on fossil feedstocks. The crucial mechanistic step in this process involve...
Saved in:
Published in | Current opinion in electrochemistry Vol. 49; p. 101598 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.02.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The electrochemical CO2 reduction reaction (eCO2RR) to multi-carbon products holds the potential to generate valuable building blocks for production of chemicals using renewable electricity, thereby diminishing the dependence on fossil feedstocks. The crucial mechanistic step in this process involves the electrochemical C–C coupling, primarily taking place on metallic Cu surfaces. However, these metallic surfaces pose mechanistic unclarities due to their structural complexity, leading to intricate mechanistic paths and difficulties in identifying the genuine catalytically active sites. In contrast, molecular catalysts with well-defined structures may offer distinctive active sites for the reaction, although their utilization remains relatively unexplored. Recent advancements in Cu-based organometallic structures have demonstrated significant potential for eCO2RR, particularly in C–C coupling toward C2 products such as C2H4 and C2H5OH. These developments are summarized and discussed herein, both in terms of catalyst development and mechanistic understanding. |
---|---|
ISSN: | 2451-9103 |
DOI: | 10.1016/j.coelec.2024.101598 |