Robust fractional order singular Kalman filter

In this article, the state estimation problem of linear fractional order singular (FOS) systems subject to matrix uncertainties is investigated where a recursive robust algorithm is derived. Considering an uncertain discrete‐time linear FOS system with added process and measurement noises, we aim to...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of robust and nonlinear control Vol. 34; no. 1; pp. 602 - 627
Main Authors Nosrati, Komeil, Belikov, Juri, Tepljakov, Aleksei, Petlenkov, Eduard
Format Journal Article
LanguageEnglish
Published Bognor Regis Wiley Subscription Services, Inc 10.01.2024
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this article, the state estimation problem of linear fractional order singular (FOS) systems subject to matrix uncertainties is investigated where a recursive robust algorithm is derived. Considering an uncertain discrete‐time linear FOS system with added process and measurement noises, we aim to design a robust Kalman‐type state estimation algorithm based on an optimal data fitting approach with a given sequence of observations. As a substitute for the stochastic formulation, this general filter is obtained by minimizing a completely deterministic regularized residual norm in its worst‐possible form at each step over admissible uncertainties. Analysis of the algorithm shows that not only does the proposed robust filter cover the traditional robust Kalman filters (KFs), but it also represents an extension of the nominal fractional singular KF (FSKF) when the system is not subject to uncertainties. Furthermore, besides giving a sufficient condition for the existence of the robust filter, we derive conditions for the asymptotic properties of the filter, where we demonstrate that the filter and the Riccati equation are stable and converge when an equivalent system is detectable and stabilizable. A numerical example is included to demonstrate the performance of the introduced filter.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1049-8923
1099-1239
DOI:10.1002/rnc.6990