The novel ovatoxin-g and isobaric palytoxin (so far referred to as putative palytoxin) from Ostreopsis cf. ovata (NW Mediterranean Sea): structural insights by LC-high resolution MSn

Blooms of the benthic dinoflagellate Ostreopsis cf. ovata are a concern in the Mediterranean Sea, since this species produces a wide range of palytoxin-like compounds listed among the most potent marine toxins. This study focused on two analogs of palytoxin found in cultures of six strains of O . cf...

Full description

Saved in:
Bibliographic Details
Published inAnalytical and bioanalytical chemistry Vol. 407; no. 4; pp. 1191 - 1204
Main Authors García-Altares, María, Tartaglione, Luciana, Dell’Aversano, Carmela, Carnicer, Olga, de la Iglesia, Pablo, Forino, Martino, Diogène, Jorge, Ciminiello, Patrizia
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.02.2015
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Blooms of the benthic dinoflagellate Ostreopsis cf. ovata are a concern in the Mediterranean Sea, since this species produces a wide range of palytoxin-like compounds listed among the most potent marine toxins. This study focused on two analogs of palytoxin found in cultures of six strains of O . cf. ovata isolated from the south of Catalonia (NW Mediterranean Sea). In addition to some already known ovatoxins, our strains produced two minor compounds, ovatoxin-g and the so far called putative palytoxin, whose structures had not been elucidated before. Insufficient quantity of these compounds impeded a full nuclear magnetic resonance (NMR)-based structural elucidation; thus, we studied their structure in crude algal extracts through liquid chromatography–electrospray ionization high-resolution mass spectrometry n (LC-ESI-HRMS n ) in positive ion mode. Under the used MS conditions, the molecules underwent fragmentation at many sites of their backbone and a large number of diagnostic fragment ions were identified. As a result, tentative structures were assigned to both ovatoxin-g and the putative palytoxin, the latter being identified as a palytoxin isomer and re-named as  isobaric palytoxin.
ISSN:1618-2642
1618-2650
DOI:10.1007/s00216-014-8338-y