microRNAs are dysregulated in the cerebral microvasculature of CKD mice
Vascular calcification arises during chronic kidney disease (CKD), and increases the risk of cardiovascular mortality. In CKD, alterations of cerebral circulation were linked with an increase in ischemic strokes and behavioral troubles. Studying pathophysiological mechanisms of calcifications and de...
Saved in:
Published in | Frontiers in bioscience (Elite edition) Vol. 6; no. 1; p. 80 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Singapore
01.01.2014
|
Subjects | |
Online Access | Get more information |
Cover
Loading…
Summary: | Vascular calcification arises during chronic kidney disease (CKD), and increases the risk of cardiovascular mortality. In CKD, alterations of cerebral circulation were linked with an increase in ischemic strokes and behavioral troubles. Studying pathophysiological mechanisms of calcifications and detecting new biomarkers in the cerebral circulation is thus an important issue. microRNAs are small non-coding, single-stranded RNAs that regulate messenger RNAs at the post-transcriptional level. They are involved in numerous pathologies and represent new opportunities to develop disease predictors. We used RT-qPCR to quantify endothelial-specific microRNAs in cerebral arterioles from WT mice and from pathological models of CKD. We used four mice groups: WT SHAM, WT CKD, Apolipoprotein E Knock-Out (ApoE-KO) SHAM, ApoE-KO CKD. Brains were removed after two and ten weeks of uremia and RNA from cerebral arterioles was extracted. miR-17 and miR-126 were the most dysregulated in the pathological conditions, at both the second week and tenth week of uremia. Our results suggest that miR-17 and miR-126 are potential new biomarkers of cerebral troubles of CKD patients and new therapeutic targets for innovative treatments. |
---|---|
ISSN: | 1945-0508 |
DOI: | 10.2741/E693 |