Photo-response of Two-Dimensional Ruddlesden-Popper Perovskite Films for Photovoltaics

Two-dimensional (2D) Ruddlesden-Popper (RP) perovskites have emerged as a prospective candidate to address the instability issues of traditional perovskite solar cells. However, the mechanisms of charge carrier transport of 2D perovskite films obtained by the solution process still remain elusive. I...

Full description

Saved in:
Bibliographic Details
Published inE3S web of conferences Vol. 257; p. 3020
Main Authors Wu, Gao, Cai, Molang, Dai, Songyuan
Format Journal Article Conference Proceeding
LanguageEnglish
Published Les Ulis EDP Sciences 01.01.2021
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Two-dimensional (2D) Ruddlesden-Popper (RP) perovskites have emerged as a prospective candidate to address the instability issues of traditional perovskite solar cells. However, the mechanisms of charge carrier transport of 2D perovskite films obtained by the solution process still remain elusive. In this work, we proposed a novel characterization technique based on the Kelvin probe force microscopy (KPFM) to investigate the micro-scale morphology and surface potential (SP) of the BA 2 MA 3 Pb 4 I 13 films. In additionally, a Xenon laser source was adopted to realize the in-situ scanning of the light response of the perovskite film. The obvious increase in surface potential values in the same scanning area before and after white light illumination indicated the emergence of photo-generated charge carriers. Based on the unique photophysical properties and form formation features of the hot-cast BA 2 MA 3 Pb 4 I 13 films, we fabricated the 2D perovskite solar cells (PSCs) with an efficiency of 10.95%. As a result, the in-situ KPFM is capable to serve as an effective approach to investigating the charge carrier behaviors in the 2D perovskites for photovoltaic applications.
Bibliography:ObjectType-Conference Proceeding-1
SourceType-Conference Papers & Proceedings-1
content type line 21
ISSN:2267-1242
2555-0403
2267-1242
DOI:10.1051/e3sconf/202125703020