Self Supervision to Distillation for Long-Tailed Visual Recognition
Deep learning has achieved remarkable progress for visual recognition on large-scale balanced datasets but still performs poorly on real-world long-tailed data. Previous methods often adopt class re-balanced training strategies to effectively alleviate the imbalance issue, but might be a risk of ove...
Saved in:
Published in | 2021 IEEE/CVF International Conference on Computer Vision (ICCV) pp. 610 - 619 |
---|---|
Main Authors | , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.10.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Deep learning has achieved remarkable progress for visual recognition on large-scale balanced datasets but still performs poorly on real-world long-tailed data. Previous methods often adopt class re-balanced training strategies to effectively alleviate the imbalance issue, but might be a risk of over-fitting tail classes. The recent decoupling method overcomes over-fitting issues by using a multi-stage training scheme, yet, it is still incapable of capturing tail class information in the feature learning stage. In this paper, we show that soft label can serve as a powerful solution to incorporate label correlation into a multi-stage training scheme for long-tailed recognition. The intrinsic relation between classes embodied by soft labels turns out to be helpful for long-tailed recognition by transferring knowledge from head to tail classes.Specifically, we propose a conceptually simple yet particularly effective multi-stage training scheme, termed as Self Supervised to Distillation (SSD). This scheme is composed of two parts. First, we introduce a self-distillation framework for long-tailed recognition, which can mine the label relation automatically. Second, we present a new distillation label generation module guided by self-supervision. The distilled labels integrate information from both label and data domains that can model long-tailed distribution effectively. We conduct extensive experiments and our method achieves the state-of-the-art results on three long-tailed recognition benchmarks: ImageNet-LT, CIFAR100-LT and iNaturalist 2018. Our SSD outperforms the strong LWS baseline by from 2.7% to 4.5% on various datasets. |
---|---|
ISSN: | 2380-7504 |
DOI: | 10.1109/ICCV48922.2021.00067 |