Unveiling the distinctive traits of functional rye centromeres: minisatellites, retrotransposons, and R-loop formation
Centromeres play a vital role in cellular division by facilitating kinetochore assembly and spindle attachments. Despite their conserved functionality, centromeric DNA sequences exhibit rapid evolution, presenting diverse sizes and compositions across species. The functional significance of rye cent...
Saved in:
Published in | Science China. Life sciences Vol. 67; no. 9; pp. 1989 - 2002 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Beijing
Science China Press
01.09.2024
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Centromeres play a vital role in cellular division by facilitating kinetochore assembly and spindle attachments. Despite their conserved functionality, centromeric DNA sequences exhibit rapid evolution, presenting diverse sizes and compositions across species. The functional significance of rye centromeric DNA sequences, particularly in centromere identity, remains unclear. In this study, we comprehensively characterized the sequence composition and organization of rye centromeres. Our findings revealed that these centromeres are primarily composed of long terminal repeat retrotransposons (LTR-RTs) and interspersed minisatellites. We systematically classified LTR-RTs into five categories, highlighting the prevalence of younger CRS1, CRS2, and CRS3 of CRSs (centromeric retrotransposons of
Secale cereale
) were primarily located in the core centromeres and exhibited a higher association with CENH3 nucleosomes. The minisatellites, mainly derived from retrotransposons, along with CRSs, played a pivotal role in establishing functional centromeres in rye. Additionally, we observed the formation of R-loops at specific regions of CRS1, CRS2, and CRS3, with both rye pericentromeres and centromeres exhibiting enrichment in R-loops. Notably, these R-loops selectively formed at binding regions of the CENH3 nucleosome in rye centromeres, suggesting a potential role in mediating the precise loading of CENH3 to centromeres and contributing to centromere specification. Our work provides insights into the DNA sequence composition, distribution, and potential function of R-loops in rye centromeres. This knowledge contributes valuable information to understanding the genetics and epigenetics of rye centromeres, offering implications for the development of synthetic centromeres in future plant modifications and beyond. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1674-7305 1869-1889 1869-1889 |
DOI: | 10.1007/s11427-023-2524-0 |