Optogenetics for sensors: On-demand fluorescent labeling of histone epigenetics

Post-translational modifications of histones to a large extent determine the functional state of chromatin loci. Dynamic visualization of histone modifications with genetically encoded fluorescent sensors makes it possible to monitor changes in the epigenetic state of a single living cell. At the sa...

Full description

Saved in:
Bibliographic Details
Published inBiochemical and biophysical research communications Vol. 687; p. 149174
Main Authors Stepanov, Afanasii I, Zhurlova, Polina A, Shuvaeva, Alexandra A, Sokolinskaya, Elena L, Gurskaya, Nadya G, Lukyanov, Konstantin A, Putlyaeva, Lidia V
Format Journal Article
LanguageEnglish
Published United States 20.12.2023
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Post-translational modifications of histones to a large extent determine the functional state of chromatin loci. Dynamic visualization of histone modifications with genetically encoded fluorescent sensors makes it possible to monitor changes in the epigenetic state of a single living cell. At the same time, the sensors can potentially compete with endogenous factors recognizing these modifications. Thus, prolonged binding of the sensors to chromatin can affect normal epigenetic regulation. Here, we report an optogenetic sensor for live-cell visualization of histone H3 methylated at lysine-9 (H3K9me3) named MPP8-LAMS (MPP8-based light-activated modification sensor). MPP8-LAMS consists of several fusion protein parts (from N- to C-terminus): i) nuclear export signal (NES), ii) far-red fluorescent protein Katushka, iii) H3K9me3-binding reader domain of the human M phase phosphoprotein 8 (MPP8), iv) the light-responsive AsLOV2 domain, which exposes a nuclear localization signal (NLS) upon blue light stimulation. In the dark, due to the NES, MPP8-LAMS is localized in the cytosol. Under blue light illumination, MPP8-LAMS underwent an efficient translocation from cytosol to nucleus, enabling visualization of H3K9me3-enriched loci. Such an on-demand visualization minimizes potential impact on cell physiology as most of the time the sensor is separated from its target. In general, the present work extends the application of optogenetics to the area of advanced use of genetically encoded sensors.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0006-291X
1090-2104
DOI:10.1016/j.bbrc.2023.149174