IL-17 production elicited by allo-major histocompatibility complex class II recognition depends on CD25posCD4pos T cells

Interleukin (IL)-17 is involved in autoimmune inflammatory disorders and naturally occurring CD25pos regulatory T cells were shown to promote IL-17 synthesis. Because IL-17 is overproduced in certain types of allograft rejection, it is important to characterize the cells responsible for IL-17 synthe...

Full description

Saved in:
Bibliographic Details
Published inTransplantation Vol. 85; no. 7; p. 943
Main Authors Benghiat, Fleur Samantha, Craciun, Ligia, De Wilde, Virginie, Dernies, Tiffany, Kubjak, Carole, Lhomme, Frédéric, Goldman, Michel, Le Moine, Alain
Format Journal Article
LanguageEnglish
Published United States 15.04.2008
Subjects
Online AccessGet more information

Cover

Loading…
More Information
Summary:Interleukin (IL)-17 is involved in autoimmune inflammatory disorders and naturally occurring CD25pos regulatory T cells were shown to promote IL-17 synthesis. Because IL-17 is overproduced in certain types of allograft rejection, it is important to characterize the cells responsible for IL-17 synthesis and to define how IL-17 is regulated during alloimmune responses. Splenic CD4pos T cells were isolated from C57BL/6 mice and fractionated according to CD25 expression. T cells were stimulated by major histocompatibility complex class II-mismatched bone marrow-derived dendritic cells from bm12 mice, either immature or made mature by exposure to lipopolysaccharide. To track T cell populations, CD25negCD4pos and CD25posCD4pos were isolated from Thy1.1 and congenic Thy1.2 mice, respectively. Cell proliferation was quantified by CFSE dilution. IL-17-producing cells and FOXP3pos cells were enumerated by intracytoplasmic staining and cytokine levels in culture supernatants were measured by ELISA. Addition of CD25posCD4pos T cells to CD25negCD4pos T cells inhibited IL-2, interferon-[gamma], and IL-13 production but promoted IL-17 synthesis on stimulation by allogenic immature DC. In this setting, IL-17 originated from CD25intCD4posFOXP3neg memory T cells, which depend on IL-2 to produce IL-17. Alloreactive CD25negCD4pos T cells were also induced to produce IL-17 when stimulated by mature DC in the presence of CD25highCD4posFOXP3pos T cells. We conclude that (1) the cellular source of IL-17 during an antiallo major histocompatibility complex class II response depends on the maturation status of allogenic DC, (2) whereas suppressing Th1 and Th2 cytokine synthesis, naturally occurring regulatory T cells, allow IL-17 production by alloreactive CD4pos T cells.
ISSN:0041-1337
DOI:10.1097/TP.0b013e31816a5ae7