Composite sliding mode control for cyber‐physical systems with multi‐source disturbances and false data injection attack

This paper investigates the sliding mode control problem for cyber‐physical systems subject to multi‐source disturbances and actuator false data injection attacks simultaneously. Firstly, a series of extended state observers are designed to estimate the unknown multi‐source disturbances. For the act...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of robust and nonlinear control Vol. 34; no. 15; pp. 10649 - 10665
Main Authors Yin, Xianghui, Zhang, Lu, Zong, Guangdeng
Format Journal Article
LanguageEnglish
Published Bognor Regis Wiley Subscription Services, Inc 01.10.2024
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This paper investigates the sliding mode control problem for cyber‐physical systems subject to multi‐source disturbances and actuator false data injection attacks simultaneously. Firstly, a series of extended state observers are designed to estimate the unknown multi‐source disturbances. For the actuator false data injection attacks, a sliding mode observer is designed to online estimate the values of attacks. Then, by introducing the disturbance and attack estimations, a dynamic sliding manifold and a composite sliding mode controller are constructed. Under the proposed approach, the unknown disturbances and false data injection attacks can be timely estimated and compensated, which can improve the disturbance rejection ability and guarantee security of the cyber‐physical system. Lyapunov theory is utilized to prove the stability of the closed‐loop system. Finally, simulations of both the numerical example and application to a power converter system demonstrate the effectiveness and superiority of the proposed composite sliding mode control approach.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1049-8923
1099-1239
DOI:10.1002/rnc.7536