Influence of continuous ramie yarn content on printability and mechanical properties of in situ impregnation 3D printed biocomposites

The present work aimed to study the printability and tensile behaviors of ramie yarn‐reinforced PLA‐based composites fabricated by an in situ impregnated fused filament fabrication (FFF) process. The dimensional error analysis was conducted to evaluate the printability of biocomposites with differen...

Full description

Saved in:
Bibliographic Details
Published inPolymer composites Vol. 46; no. 4; pp. 3097 - 3108
Main Authors Wang, Kui, Chang, Yanlu, Cheng, Ping, Rao, Yanni, Peng, Yong, Ahzi, Said
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 10.03.2025
Blackwell Publishing Ltd
Subjects
Online AccessGet full text
ISSN0272-8397
1548-0569
DOI10.1002/pc.29156

Cover

Abstract The present work aimed to study the printability and tensile behaviors of ramie yarn‐reinforced PLA‐based composites fabricated by an in situ impregnated fused filament fabrication (FFF) process. The dimensional error analysis was conducted to evaluate the printability of biocomposites with different processing variations and continuous ramie yarns. The effect of yarn volume fraction (Yf) caused by processing variations and ramie yarn characteristics on the mechanical properties was also studied. The results showed that the dimensional accuracy of the biocomposites with different ramie yarns could be adjusted by process parameter optimization. On the basis of ensuring printability, the Yf was within the range of 6.80% to 23.32% in the current study. With the increase of Yf, the tensile strength and the tensile modulus of the biocomposites significantly increased. When the Yf was 23.32%, the tensile strength and the tensile modulus increased by 60.78% and 382.35%, respectively, compared to pristine PLA. In addition, an analytical model considering the influences of Yf and microstructural characteristics such as interfacial void content (Vp) on the tensile strength of the 3D printed biocomposites was derived, and the theoretical predictions were in good agreement with experimental measurements. Printability and performances of in‐situ impregnation 3D printed biocomposites.
AbstractList The present work aimed to study the printability and tensile behaviors of ramie yarn‐reinforced PLA‐based composites fabricated by an in situ impregnated fused filament fabrication (FFF) process. The dimensional error analysis was conducted to evaluate the printability of biocomposites with different processing variations and continuous ramie yarns. The effect of yarn volume fraction (Yf) caused by processing variations and ramie yarn characteristics on the mechanical properties was also studied. The results showed that the dimensional accuracy of the biocomposites with different ramie yarns could be adjusted by process parameter optimization. On the basis of ensuring printability, the Yf was within the range of 6.80% to 23.32% in the current study. With the increase of Yf, the tensile strength and the tensile modulus of the biocomposites significantly increased. When the Yf was 23.32%, the tensile strength and the tensile modulus increased by 60.78% and 382.35%, respectively, compared to pristine PLA. In addition, an analytical model considering the influences of Yf and microstructural characteristics such as interfacial void content (Vp) on the tensile strength of the 3D printed biocomposites was derived, and the theoretical predictions were in good agreement with experimental measurements.
The present work aimed to study the printability and tensile behaviors of ramie yarn‐reinforced PLA‐based composites fabricated by an in situ impregnated fused filament fabrication (FFF) process. The dimensional error analysis was conducted to evaluate the printability of biocomposites with different processing variations and continuous ramie yarns. The effect of yarn volume fraction ( Y f ) caused by processing variations and ramie yarn characteristics on the mechanical properties was also studied. The results showed that the dimensional accuracy of the biocomposites with different ramie yarns could be adjusted by process parameter optimization. On the basis of ensuring printability, the Y f was within the range of 6.80% to 23.32% in the current study. With the increase of Y f , the tensile strength and the tensile modulus of the biocomposites significantly increased. When the Y f was 23.32%, the tensile strength and the tensile modulus increased by 60.78% and 382.35%, respectively, compared to pristine PLA. In addition, an analytical model considering the influences of Y f and microstructural characteristics such as interfacial void content ( V p ) on the tensile strength of the 3D printed biocomposites was derived, and the theoretical predictions were in good agreement with experimental measurements.
The present work aimed to study the printability and tensile behaviors of ramie yarn‐reinforced PLA‐based composites fabricated by an in situ impregnated fused filament fabrication (FFF) process. The dimensional error analysis was conducted to evaluate the printability of biocomposites with different processing variations and continuous ramie yarns. The effect of yarn volume fraction (Yf) caused by processing variations and ramie yarn characteristics on the mechanical properties was also studied. The results showed that the dimensional accuracy of the biocomposites with different ramie yarns could be adjusted by process parameter optimization. On the basis of ensuring printability, the Yf was within the range of 6.80% to 23.32% in the current study. With the increase of Yf, the tensile strength and the tensile modulus of the biocomposites significantly increased. When the Yf was 23.32%, the tensile strength and the tensile modulus increased by 60.78% and 382.35%, respectively, compared to pristine PLA. In addition, an analytical model considering the influences of Yf and microstructural characteristics such as interfacial void content (Vp) on the tensile strength of the 3D printed biocomposites was derived, and the theoretical predictions were in good agreement with experimental measurements. Printability and performances of in‐situ impregnation 3D printed biocomposites.
Author Wang, Kui
Peng, Yong
Chang, Yanlu
Rao, Yanni
Ahzi, Said
Cheng, Ping
Author_xml – sequence: 1
  givenname: Kui
  orcidid: 0000-0002-4756-9267
  surname: Wang
  fullname: Wang, Kui
  organization: School of Traffic and Transportation Engineering, Central South University
– sequence: 2
  givenname: Yanlu
  surname: Chang
  fullname: Chang, Yanlu
  organization: School of Traffic and Transportation Engineering, Central South University
– sequence: 3
  givenname: Ping
  surname: Cheng
  fullname: Cheng, Ping
  email: ping.cheng@csu.edu.cn
  organization: University of Strasbourg
– sequence: 4
  givenname: Yanni
  orcidid: 0000-0003-3573-4453
  surname: Rao
  fullname: Rao, Yanni
  email: raoyn1@csu.edu.cn
  organization: School of Traffic and Transportation Engineering, Central South University
– sequence: 5
  givenname: Yong
  surname: Peng
  fullname: Peng, Yong
  organization: School of Traffic and Transportation Engineering, Central South University
– sequence: 6
  givenname: Said
  surname: Ahzi
  fullname: Ahzi, Said
  organization: University of Strasbourg
BookMark eNp10M1KxDAQB_AgK7iugo8Q8OKla9Ik7fYo69fCgh70XLLpRLO0SU1SpA_ge5vdevUUmPzmP8Oco5l1FhC6omRJCclve7XMKyqKEzSngq8yIopqhuYkL_NsxaryDJ2HsE-SFgWbo5-N1e0AVgF2Gitno7GDGwL2sjOAR-ntsQo2Ymdx742NcmdaE0csbYM7UJ_SGiXb9Od68NFAOEQZi4OJAzZd7-HDymhSO7ufEqDBO-OU63qXEIQLdKplG-Dy712g98eHt_Vztn152qzvtpnKBS-yUuYNZaypVpoyLrnWgjRUi5IpARJAC12pknAluFZS5YzmnNKKKABRsArYAl1PuWnXrwFCrPdu8DaNrBktOSGs5FVSN5NS3oXgQddp6U76saakPhy57lV9PHKi2US_TQvjv65-XU_-FzqKgbU
Cites_doi 10.1002/pc.27612
10.1002/pc.26816
10.1177/0731684418807300
10.1016/j.compstruct.2017.11.052
10.1016/j.compstruct.2021.115033
10.1016/j.indcrop.2021.113760
10.1016/j.compstruct.2016.07.018
10.1002/pc.28567
10.1016/j.coco.2023.101592
10.1002/pc.26266
10.1016/j.compscitech.2009.01.016
10.1016/j.addma.2022.102860
10.1016/j.jmapro.2024.03.112
10.1016/j.addma.2019.05.019
10.1038/srep23058
10.1016/j.compositesb.2018.04.054
10.1016/j.compstruct.2022.116313
10.1002/pc.28302
10.1016/j.matdes.2019.107884
10.1016/j.compositesb.2019.107147
10.1038/s41598-019-50832-7
10.1016/j.compstruct.2017.10.080
10.1016/j.compstruct.2021.114866
10.1016/j.engappai.2023.106483
10.1002/pc.25978
10.3390/polym11050799
10.1016/j.addma.2022.102763
10.1016/j.engfracmech.2016.03.037
10.1016/j.compstruct.2020.112562
10.1016/j.compstruct.2020.112610
10.1016/j.mtcomm.2022.103985
10.1016/j.proeng.2016.12.159
10.1016/j.jmapro.2024.04.065
10.1016/j.compstruct.2020.113223
10.1016/j.jmapro.2022.11.024
10.1016/j.susmat.2024.e00916
10.1016/j.compstruct.2018.09.014
10.1016/j.mechmat.2020.103653
10.1002/pc.28065
10.1016/j.compositesa.2016.05.032
10.1002/pc.28525
10.1016/S1359‐835X(00)00142‐1
10.1016/j.compstruct.2018.03.051
10.1038/s41598‐020‐68331‐5
10.1016/j.compositesb.2020.108474
10.1016/j.compositesb.2021.109389
10.1016/j.compositesa.2024.108231
10.1016/j.compositesb.2022.109766
10.1016/j.compositesb.2022.110450
10.1016/j.compositesa.2023.107972
10.1016/j.jmapro.2021.12.065
ContentType Journal Article
Copyright 2024 Society of Plastics Engineers.
2025 Society of Plastics Engineers
Copyright_xml – notice: 2024 Society of Plastics Engineers.
– notice: 2025 Society of Plastics Engineers
DBID AAYXX
CITATION
7SR
8FD
JG9
DOI 10.1002/pc.29156
DatabaseName CrossRef
Engineered Materials Abstracts
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Engineered Materials Abstracts
DatabaseTitleList Materials Research Database
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1548-0569
EndPage 3108
ExternalDocumentID 10_1002_pc_29156
PC29156
Genre researchArticle
GrantInformation_xml – fundername: The Natural Science Foundation of Hunan
  funderid: 2024JJ5434
– fundername: The Postdoctoral Fellowship Program of CPSF
  funderid: GZC20240646
GroupedDBID .3N
.GA
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
29O
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8R4
8R5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABHFT
ABIJN
ABJNI
ABPVW
ACAHQ
ACBEA
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOD
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AHBTC
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBS
F00
F01
F04
G-S
G.N
GNP
GODZA
H.T
H.X
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
KZ1
LATKE
LAW
LC2
LC3
LEEKS
LITHE
LMP
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
Q2X
QB0
QRW
R.K
RNS
ROL
RX1
RYL
SUPJJ
UB1
V2E
V8K
W8V
W99
WBKPD
WFSAM
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XV2
ZZTAW
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGYGG
CITATION
LH4
7SR
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
ID FETCH-LOGICAL-c2546-7a2d133d98f134a4ff50d1f573c5eaeef5f9c704c54fcac231241190cee5639e3
IEDL.DBID DR2
ISSN 0272-8397
IngestDate Fri Jul 25 19:24:24 EDT 2025
Tue Jul 01 05:24:05 EDT 2025
Wed Mar 05 09:40:34 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2546-7a2d133d98f134a4ff50d1f573c5eaeef5f9c704c54fcac231241190cee5639e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4756-9267
0000-0003-3573-4453
PQID 3174003749
PQPubID 37365
PageCount 12
ParticipantIDs proquest_journals_3174003749
crossref_primary_10_1002_pc_29156
wiley_primary_10_1002_pc_29156_PC29156
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 10 March 2025
PublicationDateYYYYMMDD 2025-03-10
PublicationDate_xml – month: 03
  year: 2025
  text: 10 March 2025
  day: 10
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: Newtown
PublicationTitle Polymer composites
PublicationYear 2025
Publisher John Wiley & Sons, Inc
Blackwell Publishing Ltd
Publisher_xml – name: John Wiley & Sons, Inc
– name: Blackwell Publishing Ltd
References 2019; 11
2020; 248
2023; 303
2020; 203
2019; 207
2020; 10
2024; 183
2022; 282
2020; 250
2023; 250
2022; 84
2024; 119
2019; 28
2022; 75
2021; 152
2022; 32
2016; 153
2016; 88
2021; 9
2018; 185
2009; 69
2019; 9
2021; 42
2018; 184
2021; 227
2023; 123
2018; 148
2019; 38
2016; 167
2024; 120
2020; 35
2017; 173
2022; 43
2022; 235
2022; 279
2023; 40
2016; 6
2018; 193
2019; 180
2023; 44
2023; 45
2021; 259
2024; 40
2021; 170
2024; 178
2024; 45
2022; 54
2022; 55
2019; 175
2001; 32
e_1_2_8_28_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
Kabir SF (e_1_2_8_24_1) 2021; 9
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_41_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_32_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
Suteja J (e_1_2_8_30_1) 2020; 35
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_40_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – volume: 178
  year: 2024
  article-title: Effects of cellular crossing paths on mechanical properties of 3D printed continuous fiber reinforced biocomposite honeycomb structures
  publication-title: Compos Part A: Appl Sci Manuf
– volume: 227
  year: 2021
  article-title: Efficient plant fibre yarn pre‐treatment for 3D printed continuous flax fibre/poly (lactic) acid composites
  publication-title: Compos B: Eng
– volume: 42
  start-page: 5859
  issue: 11
  year: 2021
  end-page: 5868
  article-title: 3D printing of continuous carbon fiber reinforced thermoset composites using UV curable resin
  publication-title: Polym Compos
– volume: 43
  start-page: 5235
  issue: 8
  year: 2022
  end-page: 5249
  article-title: Investigation on dynamic strength of 3D‐printed continuous ramie fiber reinforced biocomposites at various strain rates using machine learning methods
  publication-title: Polym Compos
– volume: 10
  start-page: 11804
  issue: 1
  year: 2020
  article-title: Study on the 3D printability of poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate)/poly(lactic acid) blends with chain extender using fused filament fabrication
  publication-title: Sci Rep
– volume: 42
  start-page: 2305
  issue: 5
  year: 2021
  end-page: 2316
  article-title: Mechanical and thermal study of 3D printing composite filaments from wind turbine waste
  publication-title: Polym Compos
– volume: 185
  start-page: 537
  year: 2018
  end-page: 548
  article-title: Characterization of 3D printed long fibre reinforced composites
  publication-title: Compos Struct
– volume: 11
  start-page: 799
  issue: 5
  year: 2019
  article-title: Additive manufacturing of PLA‐based composites using fused filament fabrication: effect of graphene nanoplatelet reinforcement on mechanical properties, dimensional accuracy and texture
  publication-title: Polymers
– volume: 44
  start-page: 6989
  issue: 10
  year: 2023
  end-page: 7001
  article-title: Effect of printing path on compressive properties of 3D printed continuous fiber composite negative Poisson's ratio structure
  publication-title: Polym Compos
– volume: 250
  year: 2020
  article-title: 3D printing of continuous fiber reinforced diamond cellular structural composites and tensile properties
  publication-title: Compos Struct
– volume: 69
  start-page: 1057
  issue: 7
  year: 2009
  end-page: 1069
  article-title: Plant fibre composites – porosity and stiffness
  publication-title: Compos Sci Technol
– volume: 170
  year: 2021
  article-title: Interfacial and mechanical properties of continuous ramie fiber reinforced biocomposites fabricated by in‐situ impregnated 3D printing
  publication-title: Ind Crop Prod
– volume: 167
  start-page: 201
  year: 2016
  end-page: 209
  article-title: Effect of fibre volume fraction and fibre direction on crack paths in flax fibre‐reinforced composites
  publication-title: Eng Fract Mech
– volume: 55
  year: 2022
  article-title: Three‐dimensional printing of continuous carbon fiber‐reinforced polymer composites via in‐situ pin‐assisted melt impregnation
  publication-title: Addit Manuf
– volume: 84
  start-page: 1449
  year: 2022
  end-page: 1462
  article-title: Materials selection of 3D printed polyamide‐based composites at different strain rates: a case study of automobile front bumpers
  publication-title: J Manuf Process
– volume: 152
  year: 2021
  article-title: A hierarchical prediction scheme for effective properties of fuzzy fiber reinforced composites with two‐scale interphases: based on three‐phase bridging model
  publication-title: Mech Mater
– volume: 207
  start-page: 232
  year: 2019
  end-page: 239
  article-title: Synergistic reinforcement of polyamide‐based composites by combination of short and continuous carbon fibers via fused filament fabrication
  publication-title: Compos Struct
– volume: 175
  year: 2019
  article-title: Mechanical characterization of FDM 3D printing of continuous carbon fiber reinforced PLA composites
  publication-title: Compos B: Eng
– volume: 303
  year: 2023
  article-title: Quasi‐static penetration property of 3D printed woven‐like ramie fiber reinforced biocomposites
  publication-title: Compos Struct
– volume: 35
  start-page: 2061
  year: 2020
  article-title: Properties investigation of 3D printed continuous pineapple leaf fiber‐reinforced PLA composite
  publication-title: J Thermoplast Compos Mater
– volume: 282
  year: 2022
  article-title: Characterization of continuous carbon fibre reinforced 3D printed polymer composites with varying fibre volume fractions
  publication-title: Compos Struct
– volume: 248
  year: 2020
  article-title: 3D printing technology of polymer‐fiber composites in textile and fashion industry: a potential roadmap of concept to consumer
  publication-title: Compos Struct
– volume: 45
  start-page: 10976
  issue: 12
  year: 2024
  end-page: 10988
  article-title: Shape recovery and energy absorption properties of printed continuous ramie fiber reinforced thin‐walled biocomposite structures
  publication-title: Polym Compos
– volume: 203
  year: 2020
  article-title: Tailoring the mechanical properties of 3D‐printed continuous flax/PLA biocomposites by controlling the slicing parameters
  publication-title: Compos B: Eng
– volume: 45
  start-page: 7767
  issue: 9
  year: 2024
  end-page: 7789
  article-title: Advancing additive manufacturing: 3D‐printing of hybrid natural fiber sandwich (Nona/soy‐PLA) composites through filament extrusion and its effect on thermomechanical properties
  publication-title: Polym Compos
– volume: 279
  year: 2022
  article-title: Compression and flexural properties of rigid polyurethane foam composites reinforced with 3D‐printed polylactic acid lattice structures
  publication-title: Compos Struct
– volume: 250
  year: 2023
  article-title: 3D printed continuous fiber reinforced composite lightweight structures: a review and outlook
  publication-title: Compos B: Eng
– volume: 40
  year: 2024
  article-title: Remanufacturing and mechanical property restoration of post‐used polypropylene‐based composites based on in‐situ impregnated 3D printing
  publication-title: Sustain Mater Technol
– volume: 40
  year: 2023
  article-title: Advances in hybrid fibers reinforced polymer‐based composites prepared by FDM: a review on mechanical properties and prospects
  publication-title: Compos Commun
– volume: 45
  start-page: 11312
  issue: 12
  year: 2024
  end-page: 11327
  article-title: Printability and mechanical properties of solution impregnated continuous jute yarn reinforced acrylonitrile butadiene styrene composites fabricated by fused deposition modeling
  publication-title: Polym Compos
– volume: 45
  start-page: 3883
  issue: 5
  year: 2023
  end-page: 3900
  article-title: Interlaminar and translaminar fracture toughness of ‐printed continuous fiber reinforced composites: a review and prospect
  publication-title: Polym Compos
– volume: 153
  start-page: 866
  year: 2016
  end-page: 875
  article-title: Evaluation and prediction of the tensile properties of continuous fiber‐reinforced 3D printed structures
  publication-title: Compos Struct
– volume: 259
  year: 2021
  article-title: Effect of axial compression on dynamic response of concurrently printed sandwich
  publication-title: Compos Struct
– volume: 123
  year: 2023
  article-title: A hybrid multi‐stage decision‐making method with probabilistic interval‐valued hesitant fuzzy set for 3D printed composite material selection
  publication-title: Eng Appl Artif Intell
– volume: 193
  start-page: 8
  year: 2018
  end-page: 18
  article-title: Elastic properties of 3D printed fibre‐reinforced structures
  publication-title: Compos Struct
– volume: 180
  year: 2019
  article-title: 3D printing of continuous flax fibre reinforced biocomposites for structural applications
  publication-title: Mater Des
– volume: 120
  start-page: 555
  year: 2024
  end-page: 567
  article-title: Numerical and experimental investigation of direct rapid tooling for sheet metal forming using selective laser sintering
  publication-title: J Manuf Process
– volume: 9
  start-page: 75
  issue: 4
  year: 2021
  article-title: Comparing performance of 3D‐printed and injection‐molded fiber‐reinforced composite parts in ring‐spinning traveler application
  publication-title: Dent Tech
– volume: 119
  start-page: 511
  year: 2024
  end-page: 519
  article-title: A study on effects of curing and machining conditions in post‐processing of SLA additive manufactured polymer
  publication-title: J Manuf Process
– volume: 38
  start-page: 99
  issue: 3
  year: 2019
  end-page: 116
  article-title: Improving mechanical properties of continuous fiber‐reinforced thermoplastic composites produced by FDM 3D printer
  publication-title: J Reinf Plast Compos
– volume: 148
  start-page: 93
  year: 2018
  end-page: 103
  article-title: Impact damage resistance of 3D printed continuous fibre reinforced thermoplastic composites using fused deposition modelling
  publication-title: Compos B: Eng
– volume: 173
  start-page: 1283
  year: 2017
  end-page: 1290
  article-title: A review of analytical micromechanics models on composite elastoplastic behaviour
  publication-title: Procedia Eng
– volume: 235
  year: 2022
  article-title: Effects of carbon fibre reinforcement on the geometric properties of PETG‐based filament using FFF additive manufacturing
  publication-title: Compos B: Eng
– volume: 28
  start-page: 354
  year: 2019
  end-page: 364
  article-title: Reinforcement of material extrusion 3D printed polycarbonate using continuous carbon fiber
  publication-title: Addit Manuf
– volume: 75
  start-page: 154
  year: 2022
  end-page: 169
  article-title: Modeling and prediction of surface roughness and dimensional accuracy in SLS 3D printing of PVA/CB composite using the central composite design
  publication-title: J Manuf Process
– volume: 184
  start-page: 1005
  year: 2018
  end-page: 1010
  article-title: 3D printed continuous fibre reinforced composite corrugated structure
  publication-title: Compos Struct
– volume: 32
  year: 2022
  article-title: Tailoring interfacial properties of 3D‐printed continuous natural fiber reinforced polypropylene composites through parameter optimization using machine learning methods
  publication-title: Mater Today Commun
– volume: 32
  start-page: 143
  issue: 2
  year: 2001
  end-page: 172
  article-title: Simulation of the mechanical properties of fibrous composites by the bridging micromechanics model
  publication-title: Compos Part A: Appl Sci Manuf
– volume: 6
  start-page: 1
  issue: 1
  year: 2016
  end-page: 7
  article-title: Three‐dimensional printing of continuous‐fiber composites by in‐nozzle impregnation
  publication-title: Sci Rep
– volume: 54
  year: 2022
  article-title: 3D printing of continuous carbon fiber reinforced polyphenylene sulfide: exploring printability and importance of fiber volume fraction
  publication-title: Addit Manuf
– volume: 88
  start-page: 198
  year: 2016
  end-page: 205
  article-title: Interface and performance of 3D printed continuous carbon fiber reinforced PLA composites
  publication-title: Compos Part A: Appl Sci Manuf
– volume: 183
  year: 2024
  article-title: Novel application of dual‐nozzle 3D printer for enhanced in‐situ impregnation 3D printing of dry continuous fiber reinforced composites
  publication-title: Compos Part A: Appl Sci Manuf
– volume: 9
  start-page: 1
  issue: 1
  year: 2019
  end-page: 18
  article-title: Stress, strain and deformation of poly‐lactic acid filament deposited onto polyethylene terephthalate woven fabric through 3D printing process
  publication-title: Sci Rep
– volume: 35
  start-page: 2061
  year: 2020
  ident: e_1_2_8_30_1
  article-title: Properties investigation of 3D printed continuous pineapple leaf fiber‐reinforced PLA composite
  publication-title: J Thermoplast Compos Mater
– ident: e_1_2_8_21_1
  doi: 10.1002/pc.27612
– ident: e_1_2_8_34_1
  doi: 10.1002/pc.26816
– ident: e_1_2_8_35_1
  doi: 10.1177/0731684418807300
– volume: 9
  start-page: 75
  issue: 4
  year: 2021
  ident: e_1_2_8_24_1
  article-title: Comparing performance of 3D‐printed and injection‐molded fiber‐reinforced composite parts in ring‐spinning traveler application
  publication-title: Dent Tech
– ident: e_1_2_8_36_1
  doi: 10.1016/j.compstruct.2017.11.052
– ident: e_1_2_8_42_1
  doi: 10.1016/j.compstruct.2021.115033
– ident: e_1_2_8_28_1
  doi: 10.1016/j.indcrop.2021.113760
– ident: e_1_2_8_19_1
  doi: 10.1016/j.compstruct.2016.07.018
– ident: e_1_2_8_54_1
  doi: 10.1002/pc.28567
– ident: e_1_2_8_7_1
  doi: 10.1016/j.coco.2023.101592
– ident: e_1_2_8_5_1
  doi: 10.1002/pc.26266
– ident: e_1_2_8_51_1
  doi: 10.1016/j.compscitech.2009.01.016
– ident: e_1_2_8_53_1
  doi: 10.1016/j.addma.2022.102860
– ident: e_1_2_8_13_1
  doi: 10.1016/j.jmapro.2024.03.112
– ident: e_1_2_8_23_1
  doi: 10.1016/j.addma.2019.05.019
– ident: e_1_2_8_44_1
  doi: 10.1038/srep23058
– ident: e_1_2_8_39_1
  doi: 10.1016/j.compositesb.2018.04.054
– ident: e_1_2_8_6_1
  doi: 10.1016/j.compstruct.2022.116313
– ident: e_1_2_8_27_1
  doi: 10.1002/pc.28302
– ident: e_1_2_8_33_1
  doi: 10.1016/j.matdes.2019.107884
– ident: e_1_2_8_46_1
  doi: 10.1016/j.compositesb.2019.107147
– ident: e_1_2_8_40_1
  doi: 10.1038/s41598-019-50832-7
– ident: e_1_2_8_25_1
  doi: 10.1016/j.compstruct.2017.10.080
– ident: e_1_2_8_15_1
  doi: 10.1016/j.compstruct.2021.114866
– ident: e_1_2_8_16_1
  doi: 10.1016/j.engappai.2023.106483
– ident: e_1_2_8_4_1
  doi: 10.1002/pc.25978
– ident: e_1_2_8_43_1
  doi: 10.3390/polym11050799
– ident: e_1_2_8_37_1
  doi: 10.1016/j.addma.2022.102763
– ident: e_1_2_8_48_1
  doi: 10.1016/j.engfracmech.2016.03.037
– ident: e_1_2_8_12_1
  doi: 10.1016/j.compstruct.2020.112562
– ident: e_1_2_8_38_1
  doi: 10.1016/j.compstruct.2020.112610
– ident: e_1_2_8_32_1
  doi: 10.1016/j.mtcomm.2022.103985
– ident: e_1_2_8_49_1
  doi: 10.1016/j.proeng.2016.12.159
– ident: e_1_2_8_11_1
  doi: 10.1016/j.jmapro.2024.04.065
– ident: e_1_2_8_17_1
  doi: 10.1016/j.compstruct.2020.113223
– ident: e_1_2_8_2_1
  doi: 10.1016/j.jmapro.2022.11.024
– ident: e_1_2_8_3_1
  doi: 10.1016/j.susmat.2024.e00916
– ident: e_1_2_8_41_1
  doi: 10.1016/j.compstruct.2018.09.014
– ident: e_1_2_8_50_1
  doi: 10.1016/j.mechmat.2020.103653
– ident: e_1_2_8_8_1
  doi: 10.1002/pc.28065
– ident: e_1_2_8_47_1
  doi: 10.1016/j.compositesa.2016.05.032
– ident: e_1_2_8_22_1
  doi: 10.1002/pc.28525
– ident: e_1_2_8_52_1
  doi: 10.1016/S1359‐835X(00)00142‐1
– ident: e_1_2_8_18_1
  doi: 10.1016/j.compstruct.2018.03.051
– ident: e_1_2_8_45_1
  doi: 10.1038/s41598‐020‐68331‐5
– ident: e_1_2_8_31_1
  doi: 10.1016/j.compositesb.2020.108474
– ident: e_1_2_8_29_1
  doi: 10.1016/j.compositesb.2021.109389
– ident: e_1_2_8_9_1
  doi: 10.1016/j.compositesa.2024.108231
– ident: e_1_2_8_14_1
  doi: 10.1016/j.compositesb.2022.109766
– ident: e_1_2_8_26_1
  doi: 10.1016/j.compositesb.2022.110450
– ident: e_1_2_8_20_1
  doi: 10.1016/j.compositesa.2023.107972
– ident: e_1_2_8_10_1
  doi: 10.1016/j.jmapro.2021.12.065
SSID ssj0021663
Score 2.4244404
Snippet The present work aimed to study the printability and tensile behaviors of ramie yarn‐reinforced PLA‐based composites fabricated by an in situ impregnated fused...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage 3097
SubjectTerms 3D printing
biocomposite
Biomedical materials
Composite materials
continuous ramie yarn
Dimensional analysis
Error analysis
Fractions
Fused deposition modeling
Mechanical properties
Modulus of elasticity
printability
Process parameters
Tensile strength
Three dimensional printing
Yarns
Title Influence of continuous ramie yarn content on printability and mechanical properties of in situ impregnation 3D printed biocomposites
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpc.29156
https://www.proquest.com/docview/3174003749
Volume 46
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6kJz34FqtVVhBvafPYJM1RWksVFBELBQ9hs9mVIE1CHod69387u5vUKgjiKZBklySzk_lm-PYbhC4DHhGPBNSILEENIohpUOa7hu9RU3BBh46QpYH7B286I3dzd96wKuVeGK0PsSq4Sc9Q_2vp4DQqB1-ioTnr2wFkH_D7tRxPyuaPn1bKUbbl6SZqtg8ODzG31Z017UE78Hsk-oKX6yBVRZnJDnppn0-TS976dRX12fsP6cb_vcAu2m7AJ77Wq2UPbfB0H22tSRIeoI_btmsJzgSWRPYkrbO6xAVdJBwvaZGqsxCrcJZiWRastNT3EtM0xgsutxJLy8O1LJesbV7KqZIUl0lV42SRF_xV1yCxM9Yz8BhHSSbp7ZJDxstDNJvcPI-mRtOqwWBSUN_wqR1DthsHQ2E5hBIhXDO2hOs7zOWUc-GKgPkmYS4RjDIAlYAcAItAiHYBI3HnCHXSLOXHCBNiM0A13A8gYYbZIxpD2iWsIfMBXVikiy5as4W5VuQItfayHeYsVJ-0i3qtPcPGJ8sQkBJRcjtBF10pw_w6PnwcqePJX288RZu2bAysiH491KmKmp8BWqmic7UuPwHXceg1
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB58HNSDb3F11QjirWsf6XaLJ1mV9YmIggehpGkiRbYt2_agd_-3k2TrCwTxVGib0HYynW-GL98A7IUipl0aMit2JLOopLbFeOBbQZfZUkjW86QqDVxddwf39PzBf5iAw2YvjNGH-Ci4Kc_Q_2vl4KogffCpGlrwjhti-jEJ0xRxhsq8jm8_tKNcp2vaqLkBujxG3UZ51nYPmpHfY9EnwPwKU3WcOV2Ax-YJDb3kuVNXcYe__hBv_OcrLML8GH-SI7NglmBCZMsw90WVcAXezprGJSSXRHHZ06zO65KM2DAV5IWNMn0WwxXJM6Iqg5VR-34hLEvIUKjdxMr4eC0vFHFblGqqNCNlWtUkHRYj8WTKkMQ7NjOIhMRprhjuikYmylW4Pz256w-scbcGiytNfStgboIJbxL2pONRRqX07cSRfuBxXzAhpC9DHtiU-1RyxhFXInhAOIJR2keYJLw1mMryTKwDodTlCGxEEGLOjLPHLMHMSzo9HiDAcGgLdhu7RYUR5YiM_LIbFTzSn7QF7cag0dgtywjBEtWKO2EL9rVlfh0f3fT1ceOvN-7AzODu6jK6PLu-2IRZV_UJ1ry_NkxVo1psIXip4m29SN8BXtTsVA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB58gOjBt7g-I4i3rn2k7fYo6uIbEQXBQ0nTRIpsW7btYb37v50kW18giKdC24S2k-l8M3z5BmA_EgkNaMSsxJHMopLaFuOhb4UBs6WQrOdJVRq4vgnOHujFo_84ZlWqvTBGH-Kj4KY8Q_-vlYOXqTz8FA0tedeNMPuYhGkaIJBQgOjuQzrKdQLTRc0N0eMx6LbCs7Z72I78Hoo-8eVXlKrDTH8BntoHNOySl25TJ13--kO78X9vsAjzY_RJjsxyWYIJkS_D3BdNwhV4O2_blpBCEsVkz_KmaCoyZINMkBEb5vosBitS5ETVBWuj9T0iLE_JQKi9xMr0eK0oFW1bVGqqLCdVVjckG5RD8WyKkMQ7MTOIlCRZofjtikQmqlV46J_eH59Z414NFleK-lbI3BTT3TTqScejjErp26kj_dDjvmBCSF9GPLQp96nkjCOqROiAYARjtI8gSXhrMJUXuVgHQqnLEdaIMMKMGWdPWIp5l3R6PER44dAO7LVmi0sjyREb8WU3LnmsP2kHtlp7xmOnrGKESlTr7UQdONCG-XV8fHusjxt_vXEXZm5P-vHV-c3lJsy6qkmwJv1twVQ9bMQ2Ipc62dFL9B21g-sD
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Influence+of+continuous+ramie+yarn+content+on+printability+and+mechanical+properties+of+in+situ+impregnation+3D+printed+biocomposites&rft.jtitle=Polymer+composites&rft.au=Wang%2C+Kui&rft.au=Chang%2C+Yanlu&rft.au=Cheng%2C+Ping&rft.au=Rao%2C+Yanni&rft.date=2025-03-10&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0272-8397&rft.eissn=1548-0569&rft.volume=46&rft.issue=4&rft.spage=3097&rft.epage=3108&rft_id=info:doi/10.1002%2Fpc.29156&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0272-8397&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0272-8397&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0272-8397&client=summon