Influence of continuous ramie yarn content on printability and mechanical properties of in situ impregnation 3D printed biocomposites
The present work aimed to study the printability and tensile behaviors of ramie yarn‐reinforced PLA‐based composites fabricated by an in situ impregnated fused filament fabrication (FFF) process. The dimensional error analysis was conducted to evaluate the printability of biocomposites with differen...
Saved in:
Published in | Polymer composites Vol. 46; no. 4; pp. 3097 - 3108 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken, USA
John Wiley & Sons, Inc
10.03.2025
Blackwell Publishing Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 0272-8397 1548-0569 |
DOI | 10.1002/pc.29156 |
Cover
Abstract | The present work aimed to study the printability and tensile behaviors of ramie yarn‐reinforced PLA‐based composites fabricated by an in situ impregnated fused filament fabrication (FFF) process. The dimensional error analysis was conducted to evaluate the printability of biocomposites with different processing variations and continuous ramie yarns. The effect of yarn volume fraction (Yf) caused by processing variations and ramie yarn characteristics on the mechanical properties was also studied. The results showed that the dimensional accuracy of the biocomposites with different ramie yarns could be adjusted by process parameter optimization. On the basis of ensuring printability, the Yf was within the range of 6.80% to 23.32% in the current study. With the increase of Yf, the tensile strength and the tensile modulus of the biocomposites significantly increased. When the Yf was 23.32%, the tensile strength and the tensile modulus increased by 60.78% and 382.35%, respectively, compared to pristine PLA. In addition, an analytical model considering the influences of Yf and microstructural characteristics such as interfacial void content (Vp) on the tensile strength of the 3D printed biocomposites was derived, and the theoretical predictions were in good agreement with experimental measurements.
Printability and performances of in‐situ impregnation 3D printed biocomposites. |
---|---|
AbstractList | The present work aimed to study the printability and tensile behaviors of ramie yarn‐reinforced PLA‐based composites fabricated by an in situ impregnated fused filament fabrication (FFF) process. The dimensional error analysis was conducted to evaluate the printability of biocomposites with different processing variations and continuous ramie yarns. The effect of yarn volume fraction (Yf) caused by processing variations and ramie yarn characteristics on the mechanical properties was also studied. The results showed that the dimensional accuracy of the biocomposites with different ramie yarns could be adjusted by process parameter optimization. On the basis of ensuring printability, the Yf was within the range of 6.80% to 23.32% in the current study. With the increase of Yf, the tensile strength and the tensile modulus of the biocomposites significantly increased. When the Yf was 23.32%, the tensile strength and the tensile modulus increased by 60.78% and 382.35%, respectively, compared to pristine PLA. In addition, an analytical model considering the influences of Yf and microstructural characteristics such as interfacial void content (Vp) on the tensile strength of the 3D printed biocomposites was derived, and the theoretical predictions were in good agreement with experimental measurements. The present work aimed to study the printability and tensile behaviors of ramie yarn‐reinforced PLA‐based composites fabricated by an in situ impregnated fused filament fabrication (FFF) process. The dimensional error analysis was conducted to evaluate the printability of biocomposites with different processing variations and continuous ramie yarns. The effect of yarn volume fraction ( Y f ) caused by processing variations and ramie yarn characteristics on the mechanical properties was also studied. The results showed that the dimensional accuracy of the biocomposites with different ramie yarns could be adjusted by process parameter optimization. On the basis of ensuring printability, the Y f was within the range of 6.80% to 23.32% in the current study. With the increase of Y f , the tensile strength and the tensile modulus of the biocomposites significantly increased. When the Y f was 23.32%, the tensile strength and the tensile modulus increased by 60.78% and 382.35%, respectively, compared to pristine PLA. In addition, an analytical model considering the influences of Y f and microstructural characteristics such as interfacial void content ( V p ) on the tensile strength of the 3D printed biocomposites was derived, and the theoretical predictions were in good agreement with experimental measurements. The present work aimed to study the printability and tensile behaviors of ramie yarn‐reinforced PLA‐based composites fabricated by an in situ impregnated fused filament fabrication (FFF) process. The dimensional error analysis was conducted to evaluate the printability of biocomposites with different processing variations and continuous ramie yarns. The effect of yarn volume fraction (Yf) caused by processing variations and ramie yarn characteristics on the mechanical properties was also studied. The results showed that the dimensional accuracy of the biocomposites with different ramie yarns could be adjusted by process parameter optimization. On the basis of ensuring printability, the Yf was within the range of 6.80% to 23.32% in the current study. With the increase of Yf, the tensile strength and the tensile modulus of the biocomposites significantly increased. When the Yf was 23.32%, the tensile strength and the tensile modulus increased by 60.78% and 382.35%, respectively, compared to pristine PLA. In addition, an analytical model considering the influences of Yf and microstructural characteristics such as interfacial void content (Vp) on the tensile strength of the 3D printed biocomposites was derived, and the theoretical predictions were in good agreement with experimental measurements. Printability and performances of in‐situ impregnation 3D printed biocomposites. |
Author | Wang, Kui Peng, Yong Chang, Yanlu Rao, Yanni Ahzi, Said Cheng, Ping |
Author_xml | – sequence: 1 givenname: Kui orcidid: 0000-0002-4756-9267 surname: Wang fullname: Wang, Kui organization: School of Traffic and Transportation Engineering, Central South University – sequence: 2 givenname: Yanlu surname: Chang fullname: Chang, Yanlu organization: School of Traffic and Transportation Engineering, Central South University – sequence: 3 givenname: Ping surname: Cheng fullname: Cheng, Ping email: ping.cheng@csu.edu.cn organization: University of Strasbourg – sequence: 4 givenname: Yanni orcidid: 0000-0003-3573-4453 surname: Rao fullname: Rao, Yanni email: raoyn1@csu.edu.cn organization: School of Traffic and Transportation Engineering, Central South University – sequence: 5 givenname: Yong surname: Peng fullname: Peng, Yong organization: School of Traffic and Transportation Engineering, Central South University – sequence: 6 givenname: Said surname: Ahzi fullname: Ahzi, Said organization: University of Strasbourg |
BookMark | eNp10M1KxDAQB_AgK7iugo8Q8OKla9Ik7fYo69fCgh70XLLpRLO0SU1SpA_ge5vdevUUmPzmP8Oco5l1FhC6omRJCclve7XMKyqKEzSngq8yIopqhuYkL_NsxaryDJ2HsE-SFgWbo5-N1e0AVgF2Gitno7GDGwL2sjOAR-ntsQo2Ymdx742NcmdaE0csbYM7UJ_SGiXb9Od68NFAOEQZi4OJAzZd7-HDymhSO7ufEqDBO-OU63qXEIQLdKplG-Dy712g98eHt_Vztn152qzvtpnKBS-yUuYNZaypVpoyLrnWgjRUi5IpARJAC12pknAluFZS5YzmnNKKKABRsArYAl1PuWnXrwFCrPdu8DaNrBktOSGs5FVSN5NS3oXgQddp6U76saakPhy57lV9PHKi2US_TQvjv65-XU_-FzqKgbU |
Cites_doi | 10.1002/pc.27612 10.1002/pc.26816 10.1177/0731684418807300 10.1016/j.compstruct.2017.11.052 10.1016/j.compstruct.2021.115033 10.1016/j.indcrop.2021.113760 10.1016/j.compstruct.2016.07.018 10.1002/pc.28567 10.1016/j.coco.2023.101592 10.1002/pc.26266 10.1016/j.compscitech.2009.01.016 10.1016/j.addma.2022.102860 10.1016/j.jmapro.2024.03.112 10.1016/j.addma.2019.05.019 10.1038/srep23058 10.1016/j.compositesb.2018.04.054 10.1016/j.compstruct.2022.116313 10.1002/pc.28302 10.1016/j.matdes.2019.107884 10.1016/j.compositesb.2019.107147 10.1038/s41598-019-50832-7 10.1016/j.compstruct.2017.10.080 10.1016/j.compstruct.2021.114866 10.1016/j.engappai.2023.106483 10.1002/pc.25978 10.3390/polym11050799 10.1016/j.addma.2022.102763 10.1016/j.engfracmech.2016.03.037 10.1016/j.compstruct.2020.112562 10.1016/j.compstruct.2020.112610 10.1016/j.mtcomm.2022.103985 10.1016/j.proeng.2016.12.159 10.1016/j.jmapro.2024.04.065 10.1016/j.compstruct.2020.113223 10.1016/j.jmapro.2022.11.024 10.1016/j.susmat.2024.e00916 10.1016/j.compstruct.2018.09.014 10.1016/j.mechmat.2020.103653 10.1002/pc.28065 10.1016/j.compositesa.2016.05.032 10.1002/pc.28525 10.1016/S1359‐835X(00)00142‐1 10.1016/j.compstruct.2018.03.051 10.1038/s41598‐020‐68331‐5 10.1016/j.compositesb.2020.108474 10.1016/j.compositesb.2021.109389 10.1016/j.compositesa.2024.108231 10.1016/j.compositesb.2022.109766 10.1016/j.compositesb.2022.110450 10.1016/j.compositesa.2023.107972 10.1016/j.jmapro.2021.12.065 |
ContentType | Journal Article |
Copyright | 2024 Society of Plastics Engineers. 2025 Society of Plastics Engineers |
Copyright_xml | – notice: 2024 Society of Plastics Engineers. – notice: 2025 Society of Plastics Engineers |
DBID | AAYXX CITATION 7SR 8FD JG9 |
DOI | 10.1002/pc.29156 |
DatabaseName | CrossRef Engineered Materials Abstracts Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Technology Research Database Engineered Materials Abstracts |
DatabaseTitleList | Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1548-0569 |
EndPage | 3108 |
ExternalDocumentID | 10_1002_pc_29156 PC29156 |
Genre | researchArticle |
GrantInformation_xml | – fundername: The Natural Science Foundation of Hunan funderid: 2024JJ5434 – fundername: The Postdoctoral Fellowship Program of CPSF funderid: GZC20240646 |
GroupedDBID | .3N .GA 05W 0R~ 10A 123 1L6 1OB 1OC 1ZS 29O 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8R4 8R5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABHFT ABIJN ABJNI ABPVW ACAHQ ACBEA ACCFJ ACCZN ACGFO ACGFS ACGOD ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUYR AFBPY AFFPM AFGKR AFWVQ AFZJQ AHBTC AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBS F00 F01 F04 G-S G.N GNP GODZA H.T H.X HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ KZ1 LATKE LAW LC2 LC3 LEEKS LITHE LMP LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 Q2X QB0 QRW R.K RNS ROL RX1 RYL SUPJJ UB1 V2E V8K W8V W99 WBKPD WFSAM WH7 WIB WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XV2 ZZTAW ~IA ~WT AAYXX AEYWJ AGHNM AGYGG CITATION LH4 7SR 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 |
ID | FETCH-LOGICAL-c2546-7a2d133d98f134a4ff50d1f573c5eaeef5f9c704c54fcac231241190cee5639e3 |
IEDL.DBID | DR2 |
ISSN | 0272-8397 |
IngestDate | Fri Jul 25 19:24:24 EDT 2025 Tue Jul 01 05:24:05 EDT 2025 Wed Mar 05 09:40:34 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2546-7a2d133d98f134a4ff50d1f573c5eaeef5f9c704c54fcac231241190cee5639e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-4756-9267 0000-0003-3573-4453 |
PQID | 3174003749 |
PQPubID | 37365 |
PageCount | 12 |
ParticipantIDs | proquest_journals_3174003749 crossref_primary_10_1002_pc_29156 wiley_primary_10_1002_pc_29156_PC29156 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 10 March 2025 |
PublicationDateYYYYMMDD | 2025-03-10 |
PublicationDate_xml | – month: 03 year: 2025 text: 10 March 2025 day: 10 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken, USA |
PublicationPlace_xml | – name: Hoboken, USA – name: Newtown |
PublicationTitle | Polymer composites |
PublicationYear | 2025 |
Publisher | John Wiley & Sons, Inc Blackwell Publishing Ltd |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Blackwell Publishing Ltd |
References | 2019; 11 2020; 248 2023; 303 2020; 203 2019; 207 2020; 10 2024; 183 2022; 282 2020; 250 2023; 250 2022; 84 2024; 119 2019; 28 2022; 75 2021; 152 2022; 32 2016; 153 2016; 88 2021; 9 2018; 185 2009; 69 2019; 9 2021; 42 2018; 184 2021; 227 2023; 123 2018; 148 2019; 38 2016; 167 2024; 120 2020; 35 2017; 173 2022; 43 2022; 235 2022; 279 2023; 40 2016; 6 2018; 193 2019; 180 2023; 44 2023; 45 2021; 259 2024; 40 2021; 170 2024; 178 2024; 45 2022; 54 2022; 55 2019; 175 2001; 32 e_1_2_8_28_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 Kabir SF (e_1_2_8_24_1) 2021; 9 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_41_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_32_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_51_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 Suteja J (e_1_2_8_30_1) 2020; 35 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_40_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_52_1 e_1_2_8_50_1 |
References_xml | – volume: 178 year: 2024 article-title: Effects of cellular crossing paths on mechanical properties of 3D printed continuous fiber reinforced biocomposite honeycomb structures publication-title: Compos Part A: Appl Sci Manuf – volume: 227 year: 2021 article-title: Efficient plant fibre yarn pre‐treatment for 3D printed continuous flax fibre/poly (lactic) acid composites publication-title: Compos B: Eng – volume: 42 start-page: 5859 issue: 11 year: 2021 end-page: 5868 article-title: 3D printing of continuous carbon fiber reinforced thermoset composites using UV curable resin publication-title: Polym Compos – volume: 43 start-page: 5235 issue: 8 year: 2022 end-page: 5249 article-title: Investigation on dynamic strength of 3D‐printed continuous ramie fiber reinforced biocomposites at various strain rates using machine learning methods publication-title: Polym Compos – volume: 10 start-page: 11804 issue: 1 year: 2020 article-title: Study on the 3D printability of poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate)/poly(lactic acid) blends with chain extender using fused filament fabrication publication-title: Sci Rep – volume: 42 start-page: 2305 issue: 5 year: 2021 end-page: 2316 article-title: Mechanical and thermal study of 3D printing composite filaments from wind turbine waste publication-title: Polym Compos – volume: 185 start-page: 537 year: 2018 end-page: 548 article-title: Characterization of 3D printed long fibre reinforced composites publication-title: Compos Struct – volume: 11 start-page: 799 issue: 5 year: 2019 article-title: Additive manufacturing of PLA‐based composites using fused filament fabrication: effect of graphene nanoplatelet reinforcement on mechanical properties, dimensional accuracy and texture publication-title: Polymers – volume: 44 start-page: 6989 issue: 10 year: 2023 end-page: 7001 article-title: Effect of printing path on compressive properties of 3D printed continuous fiber composite negative Poisson's ratio structure publication-title: Polym Compos – volume: 250 year: 2020 article-title: 3D printing of continuous fiber reinforced diamond cellular structural composites and tensile properties publication-title: Compos Struct – volume: 69 start-page: 1057 issue: 7 year: 2009 end-page: 1069 article-title: Plant fibre composites – porosity and stiffness publication-title: Compos Sci Technol – volume: 170 year: 2021 article-title: Interfacial and mechanical properties of continuous ramie fiber reinforced biocomposites fabricated by in‐situ impregnated 3D printing publication-title: Ind Crop Prod – volume: 167 start-page: 201 year: 2016 end-page: 209 article-title: Effect of fibre volume fraction and fibre direction on crack paths in flax fibre‐reinforced composites publication-title: Eng Fract Mech – volume: 55 year: 2022 article-title: Three‐dimensional printing of continuous carbon fiber‐reinforced polymer composites via in‐situ pin‐assisted melt impregnation publication-title: Addit Manuf – volume: 84 start-page: 1449 year: 2022 end-page: 1462 article-title: Materials selection of 3D printed polyamide‐based composites at different strain rates: a case study of automobile front bumpers publication-title: J Manuf Process – volume: 152 year: 2021 article-title: A hierarchical prediction scheme for effective properties of fuzzy fiber reinforced composites with two‐scale interphases: based on three‐phase bridging model publication-title: Mech Mater – volume: 207 start-page: 232 year: 2019 end-page: 239 article-title: Synergistic reinforcement of polyamide‐based composites by combination of short and continuous carbon fibers via fused filament fabrication publication-title: Compos Struct – volume: 175 year: 2019 article-title: Mechanical characterization of FDM 3D printing of continuous carbon fiber reinforced PLA composites publication-title: Compos B: Eng – volume: 303 year: 2023 article-title: Quasi‐static penetration property of 3D printed woven‐like ramie fiber reinforced biocomposites publication-title: Compos Struct – volume: 35 start-page: 2061 year: 2020 article-title: Properties investigation of 3D printed continuous pineapple leaf fiber‐reinforced PLA composite publication-title: J Thermoplast Compos Mater – volume: 282 year: 2022 article-title: Characterization of continuous carbon fibre reinforced 3D printed polymer composites with varying fibre volume fractions publication-title: Compos Struct – volume: 248 year: 2020 article-title: 3D printing technology of polymer‐fiber composites in textile and fashion industry: a potential roadmap of concept to consumer publication-title: Compos Struct – volume: 45 start-page: 10976 issue: 12 year: 2024 end-page: 10988 article-title: Shape recovery and energy absorption properties of printed continuous ramie fiber reinforced thin‐walled biocomposite structures publication-title: Polym Compos – volume: 203 year: 2020 article-title: Tailoring the mechanical properties of 3D‐printed continuous flax/PLA biocomposites by controlling the slicing parameters publication-title: Compos B: Eng – volume: 45 start-page: 7767 issue: 9 year: 2024 end-page: 7789 article-title: Advancing additive manufacturing: 3D‐printing of hybrid natural fiber sandwich (Nona/soy‐PLA) composites through filament extrusion and its effect on thermomechanical properties publication-title: Polym Compos – volume: 279 year: 2022 article-title: Compression and flexural properties of rigid polyurethane foam composites reinforced with 3D‐printed polylactic acid lattice structures publication-title: Compos Struct – volume: 250 year: 2023 article-title: 3D printed continuous fiber reinforced composite lightweight structures: a review and outlook publication-title: Compos B: Eng – volume: 40 year: 2024 article-title: Remanufacturing and mechanical property restoration of post‐used polypropylene‐based composites based on in‐situ impregnated 3D printing publication-title: Sustain Mater Technol – volume: 40 year: 2023 article-title: Advances in hybrid fibers reinforced polymer‐based composites prepared by FDM: a review on mechanical properties and prospects publication-title: Compos Commun – volume: 45 start-page: 11312 issue: 12 year: 2024 end-page: 11327 article-title: Printability and mechanical properties of solution impregnated continuous jute yarn reinforced acrylonitrile butadiene styrene composites fabricated by fused deposition modeling publication-title: Polym Compos – volume: 45 start-page: 3883 issue: 5 year: 2023 end-page: 3900 article-title: Interlaminar and translaminar fracture toughness of ‐printed continuous fiber reinforced composites: a review and prospect publication-title: Polym Compos – volume: 153 start-page: 866 year: 2016 end-page: 875 article-title: Evaluation and prediction of the tensile properties of continuous fiber‐reinforced 3D printed structures publication-title: Compos Struct – volume: 259 year: 2021 article-title: Effect of axial compression on dynamic response of concurrently printed sandwich publication-title: Compos Struct – volume: 123 year: 2023 article-title: A hybrid multi‐stage decision‐making method with probabilistic interval‐valued hesitant fuzzy set for 3D printed composite material selection publication-title: Eng Appl Artif Intell – volume: 193 start-page: 8 year: 2018 end-page: 18 article-title: Elastic properties of 3D printed fibre‐reinforced structures publication-title: Compos Struct – volume: 180 year: 2019 article-title: 3D printing of continuous flax fibre reinforced biocomposites for structural applications publication-title: Mater Des – volume: 120 start-page: 555 year: 2024 end-page: 567 article-title: Numerical and experimental investigation of direct rapid tooling for sheet metal forming using selective laser sintering publication-title: J Manuf Process – volume: 9 start-page: 75 issue: 4 year: 2021 article-title: Comparing performance of 3D‐printed and injection‐molded fiber‐reinforced composite parts in ring‐spinning traveler application publication-title: Dent Tech – volume: 119 start-page: 511 year: 2024 end-page: 519 article-title: A study on effects of curing and machining conditions in post‐processing of SLA additive manufactured polymer publication-title: J Manuf Process – volume: 38 start-page: 99 issue: 3 year: 2019 end-page: 116 article-title: Improving mechanical properties of continuous fiber‐reinforced thermoplastic composites produced by FDM 3D printer publication-title: J Reinf Plast Compos – volume: 148 start-page: 93 year: 2018 end-page: 103 article-title: Impact damage resistance of 3D printed continuous fibre reinforced thermoplastic composites using fused deposition modelling publication-title: Compos B: Eng – volume: 173 start-page: 1283 year: 2017 end-page: 1290 article-title: A review of analytical micromechanics models on composite elastoplastic behaviour publication-title: Procedia Eng – volume: 235 year: 2022 article-title: Effects of carbon fibre reinforcement on the geometric properties of PETG‐based filament using FFF additive manufacturing publication-title: Compos B: Eng – volume: 28 start-page: 354 year: 2019 end-page: 364 article-title: Reinforcement of material extrusion 3D printed polycarbonate using continuous carbon fiber publication-title: Addit Manuf – volume: 75 start-page: 154 year: 2022 end-page: 169 article-title: Modeling and prediction of surface roughness and dimensional accuracy in SLS 3D printing of PVA/CB composite using the central composite design publication-title: J Manuf Process – volume: 184 start-page: 1005 year: 2018 end-page: 1010 article-title: 3D printed continuous fibre reinforced composite corrugated structure publication-title: Compos Struct – volume: 32 year: 2022 article-title: Tailoring interfacial properties of 3D‐printed continuous natural fiber reinforced polypropylene composites through parameter optimization using machine learning methods publication-title: Mater Today Commun – volume: 32 start-page: 143 issue: 2 year: 2001 end-page: 172 article-title: Simulation of the mechanical properties of fibrous composites by the bridging micromechanics model publication-title: Compos Part A: Appl Sci Manuf – volume: 6 start-page: 1 issue: 1 year: 2016 end-page: 7 article-title: Three‐dimensional printing of continuous‐fiber composites by in‐nozzle impregnation publication-title: Sci Rep – volume: 54 year: 2022 article-title: 3D printing of continuous carbon fiber reinforced polyphenylene sulfide: exploring printability and importance of fiber volume fraction publication-title: Addit Manuf – volume: 88 start-page: 198 year: 2016 end-page: 205 article-title: Interface and performance of 3D printed continuous carbon fiber reinforced PLA composites publication-title: Compos Part A: Appl Sci Manuf – volume: 183 year: 2024 article-title: Novel application of dual‐nozzle 3D printer for enhanced in‐situ impregnation 3D printing of dry continuous fiber reinforced composites publication-title: Compos Part A: Appl Sci Manuf – volume: 9 start-page: 1 issue: 1 year: 2019 end-page: 18 article-title: Stress, strain and deformation of poly‐lactic acid filament deposited onto polyethylene terephthalate woven fabric through 3D printing process publication-title: Sci Rep – volume: 35 start-page: 2061 year: 2020 ident: e_1_2_8_30_1 article-title: Properties investigation of 3D printed continuous pineapple leaf fiber‐reinforced PLA composite publication-title: J Thermoplast Compos Mater – ident: e_1_2_8_21_1 doi: 10.1002/pc.27612 – ident: e_1_2_8_34_1 doi: 10.1002/pc.26816 – ident: e_1_2_8_35_1 doi: 10.1177/0731684418807300 – volume: 9 start-page: 75 issue: 4 year: 2021 ident: e_1_2_8_24_1 article-title: Comparing performance of 3D‐printed and injection‐molded fiber‐reinforced composite parts in ring‐spinning traveler application publication-title: Dent Tech – ident: e_1_2_8_36_1 doi: 10.1016/j.compstruct.2017.11.052 – ident: e_1_2_8_42_1 doi: 10.1016/j.compstruct.2021.115033 – ident: e_1_2_8_28_1 doi: 10.1016/j.indcrop.2021.113760 – ident: e_1_2_8_19_1 doi: 10.1016/j.compstruct.2016.07.018 – ident: e_1_2_8_54_1 doi: 10.1002/pc.28567 – ident: e_1_2_8_7_1 doi: 10.1016/j.coco.2023.101592 – ident: e_1_2_8_5_1 doi: 10.1002/pc.26266 – ident: e_1_2_8_51_1 doi: 10.1016/j.compscitech.2009.01.016 – ident: e_1_2_8_53_1 doi: 10.1016/j.addma.2022.102860 – ident: e_1_2_8_13_1 doi: 10.1016/j.jmapro.2024.03.112 – ident: e_1_2_8_23_1 doi: 10.1016/j.addma.2019.05.019 – ident: e_1_2_8_44_1 doi: 10.1038/srep23058 – ident: e_1_2_8_39_1 doi: 10.1016/j.compositesb.2018.04.054 – ident: e_1_2_8_6_1 doi: 10.1016/j.compstruct.2022.116313 – ident: e_1_2_8_27_1 doi: 10.1002/pc.28302 – ident: e_1_2_8_33_1 doi: 10.1016/j.matdes.2019.107884 – ident: e_1_2_8_46_1 doi: 10.1016/j.compositesb.2019.107147 – ident: e_1_2_8_40_1 doi: 10.1038/s41598-019-50832-7 – ident: e_1_2_8_25_1 doi: 10.1016/j.compstruct.2017.10.080 – ident: e_1_2_8_15_1 doi: 10.1016/j.compstruct.2021.114866 – ident: e_1_2_8_16_1 doi: 10.1016/j.engappai.2023.106483 – ident: e_1_2_8_4_1 doi: 10.1002/pc.25978 – ident: e_1_2_8_43_1 doi: 10.3390/polym11050799 – ident: e_1_2_8_37_1 doi: 10.1016/j.addma.2022.102763 – ident: e_1_2_8_48_1 doi: 10.1016/j.engfracmech.2016.03.037 – ident: e_1_2_8_12_1 doi: 10.1016/j.compstruct.2020.112562 – ident: e_1_2_8_38_1 doi: 10.1016/j.compstruct.2020.112610 – ident: e_1_2_8_32_1 doi: 10.1016/j.mtcomm.2022.103985 – ident: e_1_2_8_49_1 doi: 10.1016/j.proeng.2016.12.159 – ident: e_1_2_8_11_1 doi: 10.1016/j.jmapro.2024.04.065 – ident: e_1_2_8_17_1 doi: 10.1016/j.compstruct.2020.113223 – ident: e_1_2_8_2_1 doi: 10.1016/j.jmapro.2022.11.024 – ident: e_1_2_8_3_1 doi: 10.1016/j.susmat.2024.e00916 – ident: e_1_2_8_41_1 doi: 10.1016/j.compstruct.2018.09.014 – ident: e_1_2_8_50_1 doi: 10.1016/j.mechmat.2020.103653 – ident: e_1_2_8_8_1 doi: 10.1002/pc.28065 – ident: e_1_2_8_47_1 doi: 10.1016/j.compositesa.2016.05.032 – ident: e_1_2_8_22_1 doi: 10.1002/pc.28525 – ident: e_1_2_8_52_1 doi: 10.1016/S1359‐835X(00)00142‐1 – ident: e_1_2_8_18_1 doi: 10.1016/j.compstruct.2018.03.051 – ident: e_1_2_8_45_1 doi: 10.1038/s41598‐020‐68331‐5 – ident: e_1_2_8_31_1 doi: 10.1016/j.compositesb.2020.108474 – ident: e_1_2_8_29_1 doi: 10.1016/j.compositesb.2021.109389 – ident: e_1_2_8_9_1 doi: 10.1016/j.compositesa.2024.108231 – ident: e_1_2_8_14_1 doi: 10.1016/j.compositesb.2022.109766 – ident: e_1_2_8_26_1 doi: 10.1016/j.compositesb.2022.110450 – ident: e_1_2_8_20_1 doi: 10.1016/j.compositesa.2023.107972 – ident: e_1_2_8_10_1 doi: 10.1016/j.jmapro.2021.12.065 |
SSID | ssj0021663 |
Score | 2.4244404 |
Snippet | The present work aimed to study the printability and tensile behaviors of ramie yarn‐reinforced PLA‐based composites fabricated by an in situ impregnated fused... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 3097 |
SubjectTerms | 3D printing biocomposite Biomedical materials Composite materials continuous ramie yarn Dimensional analysis Error analysis Fractions Fused deposition modeling Mechanical properties Modulus of elasticity printability Process parameters Tensile strength Three dimensional printing Yarns |
Title | Influence of continuous ramie yarn content on printability and mechanical properties of in situ impregnation 3D printed biocomposites |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpc.29156 https://www.proquest.com/docview/3174003749 |
Volume | 46 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6kJz34FqtVVhBvafPYJM1RWksVFBELBQ9hs9mVIE1CHod69387u5vUKgjiKZBklySzk_lm-PYbhC4DHhGPBNSILEENIohpUOa7hu9RU3BBh46QpYH7B286I3dzd96wKuVeGK0PsSq4Sc9Q_2vp4DQqB1-ioTnr2wFkH_D7tRxPyuaPn1bKUbbl6SZqtg8ODzG31Z017UE78Hsk-oKX6yBVRZnJDnppn0-TS976dRX12fsP6cb_vcAu2m7AJ77Wq2UPbfB0H22tSRIeoI_btmsJzgSWRPYkrbO6xAVdJBwvaZGqsxCrcJZiWRastNT3EtM0xgsutxJLy8O1LJesbV7KqZIUl0lV42SRF_xV1yCxM9Yz8BhHSSbp7ZJDxstDNJvcPI-mRtOqwWBSUN_wqR1DthsHQ2E5hBIhXDO2hOs7zOWUc-GKgPkmYS4RjDIAlYAcAItAiHYBI3HnCHXSLOXHCBNiM0A13A8gYYbZIxpD2iWsIfMBXVikiy5as4W5VuQItfayHeYsVJ-0i3qtPcPGJ8sQkBJRcjtBF10pw_w6PnwcqePJX288RZu2bAysiH491KmKmp8BWqmic7UuPwHXceg1 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB58HNSDb3F11QjirWsf6XaLJ1mV9YmIggehpGkiRbYt2_agd_-3k2TrCwTxVGib0HYynW-GL98A7IUipl0aMit2JLOopLbFeOBbQZfZUkjW86QqDVxddwf39PzBf5iAw2YvjNGH-Ci4Kc_Q_2vl4KogffCpGlrwjhti-jEJ0xRxhsq8jm8_tKNcp2vaqLkBujxG3UZ51nYPmpHfY9EnwPwKU3WcOV2Ax-YJDb3kuVNXcYe__hBv_OcrLML8GH-SI7NglmBCZMsw90WVcAXezprGJSSXRHHZ06zO65KM2DAV5IWNMn0WwxXJM6Iqg5VR-34hLEvIUKjdxMr4eC0vFHFblGqqNCNlWtUkHRYj8WTKkMQ7NjOIhMRprhjuikYmylW4Pz256w-scbcGiytNfStgboIJbxL2pONRRqX07cSRfuBxXzAhpC9DHtiU-1RyxhFXInhAOIJR2keYJLw1mMryTKwDodTlCGxEEGLOjLPHLMHMSzo9HiDAcGgLdhu7RYUR5YiM_LIbFTzSn7QF7cag0dgtywjBEtWKO2EL9rVlfh0f3fT1ceOvN-7AzODu6jK6PLu-2IRZV_UJ1ry_NkxVo1psIXip4m29SN8BXtTsVA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB58gOjBt7g-I4i3rn2k7fYo6uIbEQXBQ0nTRIpsW7btYb37v50kW18giKdC24S2k-l8M3z5BmA_EgkNaMSsxJHMopLaFuOhb4UBs6WQrOdJVRq4vgnOHujFo_84ZlWqvTBGH-Kj4KY8Q_-vlYOXqTz8FA0tedeNMPuYhGkaIJBQgOjuQzrKdQLTRc0N0eMx6LbCs7Z72I78Hoo-8eVXlKrDTH8BntoHNOySl25TJ13--kO78X9vsAjzY_RJjsxyWYIJkS_D3BdNwhV4O2_blpBCEsVkz_KmaCoyZINMkBEb5vosBitS5ETVBWuj9T0iLE_JQKi9xMr0eK0oFW1bVGqqLCdVVjckG5RD8WyKkMQ7MTOIlCRZofjtikQmqlV46J_eH59Z414NFleK-lbI3BTT3TTqScejjErp26kj_dDjvmBCSF9GPLQp96nkjCOqROiAYARjtI8gSXhrMJUXuVgHQqnLEdaIMMKMGWdPWIp5l3R6PER44dAO7LVmi0sjyREb8WU3LnmsP2kHtlp7xmOnrGKESlTr7UQdONCG-XV8fHusjxt_vXEXZm5P-vHV-c3lJsy6qkmwJv1twVQ9bMQ2Ipc62dFL9B21g-sD |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Influence+of+continuous+ramie+yarn+content+on+printability+and+mechanical+properties+of+in+situ+impregnation+3D+printed+biocomposites&rft.jtitle=Polymer+composites&rft.au=Wang%2C+Kui&rft.au=Chang%2C+Yanlu&rft.au=Cheng%2C+Ping&rft.au=Rao%2C+Yanni&rft.date=2025-03-10&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0272-8397&rft.eissn=1548-0569&rft.volume=46&rft.issue=4&rft.spage=3097&rft.epage=3108&rft_id=info:doi/10.1002%2Fpc.29156&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0272-8397&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0272-8397&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0272-8397&client=summon |