Recent progress in the single-cell C4 photosynthesis in terrestrial plants
Currently, single-cell C4 photosynthesis has been reported in four terrestrial plant species, Bienertia cycloptera, B. sinuspersici, B. kavirense and Suaeda aralocaspica, of family Chenopodiaceae. These species possess novel mechanisms of C4 photosynthesis through spatial partitioning of organelles...
Saved in:
Published in | Frontiers in biology Vol. 7; no. 6; pp. 539 - 547 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Heidelberg
Springer-Verlag
01.12.2012
SP Higher Education Press |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Currently, single-cell C4 photosynthesis has been reported in four terrestrial plant species, Bienertia cycloptera, B. sinuspersici, B. kavirense and Suaeda aralocaspica, of family Chenopodiaceae. These species possess novel mechanisms of C4 photosynthesis through spatial partitioning of organelles and key enzymes in distinct cytoplasmic domains within single chlorenchyma cells. Anatomical and biochemical studies have shown that the three Bienertia species and S. aralocaspica utilize biochemical and organellar compartmentation to achieve the equivalent spatial separation of Kranz anatomy but within a single photosynthetic cell. These discoveries have challenged the paradigm for C4 photosynthesis in terrestrial plants which had suggested for more than 40 years that the Kranz feature was indispensably required for its C4 function. In this review, we focus on the recent progress in understanding the cellular and molecular mechanisms that control the spatial relationship of organelles in these unique single-cell C4 systems. The demonstrated interaction of dimorphic chloroplasts with microtubules and actin filaments has shed light on the importance of these cytoskeleton components in the intracellular partitioning of organelles. Future perspectives on the potential function of the cytoskeleton in targeting gene products to specific subcellular compartments are discussed. |
---|---|
Bibliography: | 11-5892/Q C4 plants, single-cell C4 photosynthesis, Chenopodiaceae, dimorphic chloroplasts, organelle compartmentation,photosynthetic enzymes, cytoskeleton, protein targeting Currently, single-cell C4 photosynthesis has been reported in four terrestrial plant species, Bienertia cycloptera, B. sinuspersici, B. kavirense and Suaeda aralocaspica, of family Chenopodiaceae. These species possess novel mechanisms of C4 photosynthesis through spatial partitioning of organelles and key enzymes in distinct cytoplasmic domains within single chlorenchyma cells. Anatomical and biochemical studies have shown that the three Bienertia species and S. aralocaspica utilize biochemical and organellar compartmentation to achieve the equivalent spatial separation of Kranz anatomy but within a single photosynthetic cell. These discoveries have challenged the paradigm for C4 photosynthesis in terrestrial plants which had suggested for more than 40 years that the Kranz feature was indispensably required for its C4 function. In this review, we focus on the recent progress in understanding the cellular and molecular mechanisms that control the spatial relationship of organelles in these unique single-cell C4 systems. The demonstrated interaction of dimorphic chloroplasts with microtubules and actin filaments has shed light on the importance of these cytoskeleton components in the intracellular partitioning of organelles. Future perspectives on the potential function of the cytoskeleton in targeting gene products to specific subcellular compartments are discussed. http://dx.doi.org/10.1007/s11515-012-9248-z |
ISSN: | 1674-7984 1674-7992 |
DOI: | 10.1007/s11515-012-9248-z |