Quantitative analysis of arsenic containing hydrocarbons in marine samples by GC-MS

Rational. This study aims to develop a new analytical method for the quantitative determination of arsenic-containing hydrocarbons (AsHCs) with gas chromatography–mass spectrometry (GC-MS). The new method is an alternative approach to determine these compounds in environmental samples. Methodology....

Full description

Saved in:
Bibliographic Details
Published inEnvironmental chemistry Vol. 20; no. 1&2
Main Authors Raber, Georg, Weishaupt, Sonja, Lappi, Fabian, Stiboller, Michael, Feldmann, Joerg
Format Journal Article
LanguageEnglish
Published Collingwood CSIRO 2023
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Rational. This study aims to develop a new analytical method for the quantitative determination of arsenic-containing hydrocarbons (AsHCs) with gas chromatography–mass spectrometry (GC-MS). The new method is an alternative approach to determine these compounds in environmental samples. Methodology. AsHCs were extracted and purified from fish oil and seaweed samples. Due to the thermal conversion of oxo-AsHCs to their trivalent forms in the injection port of the GC, the conversion is incomplete resulting in low signal intensities and large carry overs. We therefore chemically reduced AsHCs to their trivalent forms and analysed them with GC-MS, gas chromatography–tandem mass spectrometry (GC-MS/MS) and high performance liquid chromatography–inductively coupled plasma mass spectrometry (HPLC-ICPMS). The possibility for compound independent quantification with commercially available standards was investigated. Results. After optimisation of conditions for reduction of AsHCs, these compounds could be determined in marine samples using authentic standards with the new method. Results showed good agreement with results from HPLC-ICPMS. The novel GC-MS method showed compound independent quantification using triphenylarsine (TPA) as a commercially available standard. Discussion. With the developed method we could demonstrate the applicability of GC-MS for the quantitative determination of AsHCs in marine samples for the first time. The compound independent quantification with TPA opens up a quantification for AsHCs species for which no standards are commercially available. The broad applicability might enhance screening for these toxic compounds in the environment.
ISSN:1448-2517
1449-8979
DOI:10.1071/EN22136