Auxiliary splines space preconditioning for B-splines finite elements: The case of H(curl,Ω) and H(div,Ω) elliptic problems

This paper presents a study of large linear systems resulting from the regular B-splines finite element discretization of the curl−curl and grad−div elliptic problems on unit square/cube domains. We consider systems subject to both homogeneous essential and natural boundary conditions. Our objective...

Full description

Saved in:
Bibliographic Details
Published inComputers & mathematics with applications (1987) Vol. 159; pp. 102 - 121
Main Authors El Akri, A., Jbilou, K., Ratnani, A.
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.04.2024
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This paper presents a study of large linear systems resulting from the regular B-splines finite element discretization of the curl−curl and grad−div elliptic problems on unit square/cube domains. We consider systems subject to both homogeneous essential and natural boundary conditions. Our objective is to develop a preconditioning strategy that is optimal and robust, based on the Auxiliary Space Preconditioning method proposed by Hiptmair et al. [48]. Our approach is demonstrated to be robust with respect to mesh size, and we also show how it can be combined with the Generalized Locally Toeplitz (GLT) sequences analysis presented in [59] in order to derive an algorithm that is optimal and stable with respect to spline degree. Numerical tests are conducted to illustrate the effectiveness of our approach.
ISSN:0898-1221
1873-7668
DOI:10.1016/j.camwa.2024.02.001