Electronic transport via DTF-NEGF at bipyridine junctions with 1D organic electrodes

In this work, we study the properties of electronic transport in molecular junctions formed by bipyridine isomers as central region coupled at electrodes of carbyne wires. Through calculations of first principles, based on Density Functional Theory (DFT), combined with Non-Equilibrium Green’s Functi...

Full description

Saved in:
Bibliographic Details
Published inPhysica. E, Low-dimensional systems & nanostructures Vol. 135; p. 114953
Main Authors Araújo, José Weliton de Oliveira, Moura-Moreira, Mayra, Del Nero, Jordan
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.01.2022
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this work, we study the properties of electronic transport in molecular junctions formed by bipyridine isomers as central region coupled at electrodes of carbyne wires. Through calculations of first principles, based on Density Functional Theory (DFT), combined with Non-Equilibrium Green’s Functions (NEGF), we obtain important properties such as electric current, differential conductance, transmission, and eigenchannels. The results showed that the presence of nitrogen atoms in the molecule–electrode interface strongly affects the coupling of the junction, providing better electronic conduction; this is corroborated by the transmission eigenchannels. The transport properties analyzed revealed that in bipyridine bridges, devices with carbyne electrodes, presented better performance when compared to other works that used metallic electrodes (Au, Ag, and Cu) or graphene nanoribbons electrodes. The devices proposed showed a Field Effect Transistor (FET) behavior when are formed by symmetric isomers, whereas for asymmetric systems we obtained characteristics of Molecular Diode (MD).
ISSN:1386-9477
1873-1759
DOI:10.1016/j.physe.2021.114953