Adaptive finite-time consensus tracking for nonlinear second-order multi-agent systems based on integral sliding mode
This paper delves into the investigation of finite-time consensus for second-order nonlinear multi-agent systems (MASs) with external disturbances under directed topology. The MASs considered in this study consist of n followers and a leader, and the followers are subject to bounded disturbances. Fi...
Saved in:
Published in | European journal of control Vol. 80; p. 101122 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.11.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | This paper delves into the investigation of finite-time consensus for second-order nonlinear multi-agent systems (MASs) with external disturbances under directed topology. The MASs considered in this study consist of n followers and a leader, and the followers are subject to bounded disturbances. First, a continuous nonsingular integral terminal sliding mode is designed, which can effectively eliminate the singularity and chattering. Then, a finite-time disturbance observer is introduced to estimate and compensate for disturbances. Subsequently, an integral sliding mode adaptive controller is designed to enhance system’s robustness, improve response speed, and increase tracking accuracy. Furthermore, Lyapunov theory is utilized to demonstrate that the system achieves finite-time consensus under a directed connected topology. Finally, we apply a simulation to verify the efficacy of the proposed consensus control protocol. |
---|---|
ISSN: | 0947-3580 |
DOI: | 10.1016/j.ejcon.2024.101122 |