Passively mode-locked quantum dot laser subject to dual long cavity time-delayed optical feedback
In this contribution, we study experimentally the impact of two long external passive optical cavities on the repetition rate and timing jitter of a monolithic passively mode-locked InAs/InGaAs quantum dot laser. The dual cavity scheme allows to fully suppress feedback induced sidebands in the radio...
Saved in:
Published in | Materials today : proceedings Vol. 7; pp. 916 - 919 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.01.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In this contribution, we study experimentally the impact of two long external passive optical cavities on the repetition rate and timing jitter of a monolithic passively mode-locked InAs/InGaAs quantum dot laser. The dual cavity scheme allows to fully suppress feedback induced sidebands in the radio-frequency spectrum. By fine delay control of the optical self-feedback delay lengths, a repetition rate tunability of 9.4 MHz is achieved. The lowest repetition rate line width amounts to less than 50 Hz, corresponding to a timing jitter of 1.7 fs. We explain the experimentally observed timing jitter and repetition rate trends qualitatively by adapting a versatile simple time-domain model. Both experiment and simulations indicate the strongest pulse train timing jitter reduction at feedback lengths that yield the lowest repetition rate frequency deviation |
---|---|
ISSN: | 2214-7853 2214-7853 |
DOI: | 10.1016/j.matpr.2018.12.094 |