Prediction of AI-Based Personal Thermal Comfort in a Car Using Machine-Learning Algorithm
Defining a passenger’s thermal comfort in a car cabin is difficult because of the narrow environment and various parameters. Although passenger comfort is predicted using a thermal-comfort scale in the overall cabin or a local area, the scale’s range of passenger comfort may differ owing to psycholo...
Saved in:
Published in | Electronics (Basel) Vol. 11; no. 3; p. 340 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.02.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Defining a passenger’s thermal comfort in a car cabin is difficult because of the narrow environment and various parameters. Although passenger comfort is predicted using a thermal-comfort scale in the overall cabin or a local area, the scale’s range of passenger comfort may differ owing to psychological factors and individual preferences. Among the many factors affecting such comfort levels, the temperature of the seat is one of the direct and significant environmental factors. Therefore, it is necessary to predict the cabin environment and seat-related personal thermal comfort. Accordingly, machine learning is used in this research to predict whether a passenger’s seat-heating-operation pattern can be predicted in a winter environment. The experiment measures the ambient factor and collects data on passenger heating-operation patterns using a device in an actual winter environment. The temperature is set as the input parameter in the measured data and the operation pattern is used as the output parameter. Based on the parameters, the predictive accuracy of the heating-operation pattern is investigated using machine learning. The algorithms used in the machine-learning train are Tree, SVM, and kNN. In addition, the predictive accuracy is tested using SVM and kNN, which shows a high validation accuracy based on the prediction results of the algorithm. In this research, the parameters predicting the personal thermal comfort of three passengers are investigated as a combination of input parameters, according to the passengers. As a result, the predictive accuracy of the operation pattern according to the tested input parameter is 0.96, showing the highest accuracy. Considering each passenger, the predictive accuracy has a maximum deviation of 30%. However, we verify that it indicates the level of accuracy in predicting a passenger’s heating-operation pattern. Accordingly, the possibility of operating a heating seat without a switch operation is confirmed through machine learning. The primary-stage research result reveals whether it is possible to predict objective personal thermal comfort using the passenger seat’s heating-operation pattern. Based on the results of this research, it is expected to be utilized for system construction based on the AI prediction of operation patterns according to the passenger through machine learning. |
---|---|
ISSN: | 2079-9292 2079-9292 |
DOI: | 10.3390/electronics11030340 |