Measurements of low-energy, re-entrant albedo protons by the HEPD-01 space-borne detector
Cosmic rays’ interactions with the residual atmosphere surrounding the Earth produce a variety of particles, like electrons, positrons, protons, anti-protons, and Helium nuclei that can be observed below the local geomagnetic cutoff. In this work, we present new measurements of downward-going, albed...
Saved in:
Published in | Astroparticle physics Vol. 162; p. 102993 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.10.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Cosmic rays’ interactions with the residual atmosphere surrounding the Earth produce a variety of particles, like electrons, positrons, protons, anti-protons, and Helium nuclei that can be observed below the local geomagnetic cutoff. In this work, we present new measurements of downward-going, albedo proton fluxes with kinetic energy in the range ∼40–∼250 MeV, performed by the High-Energy Particle Detector (HEPD-01) on board of the China Seismo-Electromagnetic Satellite - CSES-01 - at an altitude of ∼500 km. Employing a dedicated trajectory-tracing simulation routine, the protons collected by HEPD-01 are classified into quasi-trapped (QT), long lifetime (≳10 s) particles concentrating in the equatorial region of the Earth, and un-trapped (UT), distributed at all latitudes; the latter includes both precipitating short lifetime particles (UTS) and pseudo-trapped long lifetime (UTL) populations, abundant in the so-called penumbra regions. The temporal trend of re-entrant protons between 2018 and 2022 is also reported, assessing the stability of such population during the data-taking period of HEPD-01; this highlights their independence from the long-term modulating effect of the solar activity.
•A study of re-entrant albedo protons in the Earth’s magnetosphere as a function of energy with the HEPD-01 payload is presented.•A comparison with past experiments is carried out, with good results.•Time-profiles of re-entrant albedo protons show a general stability during the analyzed period. |
---|---|
ISSN: | 0927-6505 1873-2852 |
DOI: | 10.1016/j.astropartphys.2024.102993 |