Numerical Simulation of an Optical Resonator for the Generation of Radial Laguerre–Gauss LGp0 Modes
The research on high-order transverse modes in lasers is a subject as old as the laser itself and has been largely abandoned. However, recently several studies have demonstrated an interest in using, instead of the usual Gaussian beam, a radial Laguerre–Gauss LGp0 beam, as, for instance, one can obs...
Saved in:
Published in | Applied sciences Vol. 15; no. 6; p. 3331 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
18.03.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The research on high-order transverse modes in lasers is a subject as old as the laser itself and has been largely abandoned. However, recently several studies have demonstrated an interest in using, instead of the usual Gaussian beam, a radial Laguerre–Gauss LGp0 beam, as, for instance, one can observe a strong improvement, for a given power, in the longitudinal and radial forces in optical tweezers illuminated by a LGp0 beam instead of the usual Gaussian beam. Since in most commercial lasers, the delivered laser beam is Gaussian, we therefore think it opportune to consider the problems of forcing a laser to oscillate individually on a higher-order transverse LGp0 mode. We propose a comprehensive analysis of the effects of an intra-cavity phase or amplitude mask on the fundamental mode of a plano-concave cavity. In particular, we discuss the best choice of parameters favouring the fundamental mode of a pure radial Laguerre–Gauss LGp0 model. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 2076-3417 2076-3417 |
DOI: | 10.3390/app15063331 |