In-situ Fe2P reinforced bulk Cu–Fe immiscible alloy with nanotwinned Cu produced by selective laser melting
In-situ Fe2P reinforced Cu–Fe bulk immiscible alloy with nanotwinned Cu (nt-Cu) was produced by selective laser melting. The immiscible alloy is characterized by ε-Cu, micrometer fibrous Fe2P and nanoscale Fe2P particles. Moreover, many α-Fe particles (∼30 μm) are distributed inside the fibrous Fe2P...
Saved in:
Published in | Journal of alloys and compounds Vol. 838; p. 155592 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Lausanne
Elsevier B.V
15.10.2020
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In-situ Fe2P reinforced Cu–Fe bulk immiscible alloy with nanotwinned Cu (nt-Cu) was produced by selective laser melting. The immiscible alloy is characterized by ε-Cu, micrometer fibrous Fe2P and nanoscale Fe2P particles. Moreover, many α-Fe particles (∼30 μm) are distributed inside the fibrous Fe2P. Interestingly, large amounts of nt-Cu particles (∼15 nm) are dispersed inside the fibrous Fe2P and nanoscale Fe2P particles (∼200 nm). The combination of in-situ Fe2P and twin boundaries in the Cu–Fe immiscible alloy results in enhanced strength and plasticity with ultimate compressive stress of 896 ± 20 MPa and strain to failure of 19 ± 2%. |
---|---|
ISSN: | 0925-8388 1873-4669 |
DOI: | 10.1016/j.jallcom.2020.155592 |