Ceria supported nickel catalysts for CO removal from H2-rich gas
CO in H2-rich gas must be removed to meet various requirements in industrial applications. Four methods, i.e., the precipitation method using aqueous ammonia, the complexing method using urea, the complexing method using citric acid and the precipitation method using ammonium carbonate, were adopted...
Saved in:
Published in | Journal of rare earths Vol. 34; no. 12; pp. 1213 - 1220 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.12.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | CO in H2-rich gas must be removed to meet various requirements in industrial applications. Four methods, i.e., the precipitation method using aqueous ammonia, the complexing method using urea, the complexing method using citric acid and the precipitation method using ammonium carbonate, were adopted to prepare samples NiO/CeO2 as catalyst precursors for removal of CO from H2-rich gas via selective methanation reaction. The sample NiO/CeO2 prepared by the precipitation method using aqueous ammonia as precipitant exhibited the highest catalytic activity both for CO methanation and for CO2 methanation after reduction prior to the catalytic reaction. Chlorine ion was then doped to suppress CO2 conversion. Effect of chlorine doping was investigated. Over the optimal catalyst 40%Ni(Cl(0.2))/CeO2, CO in the H2-rich gas was removed to below 10 ppm with selectivity of 60% or higher at reaction temperatures 230–250 ℃ in the test period of 75 h. |
---|---|
Bibliography: | 11-2788/TF CO in H2-rich gas must be removed to meet various requirements in industrial applications. Four methods, i.e., the precipitation method using aqueous ammonia, the complexing method using urea, the complexing method using citric acid and the precipitation method using ammonium carbonate, were adopted to prepare samples NiO/CeO2 as catalyst precursors for removal of CO from H2-rich gas via selective methanation reaction. The sample NiO/CeO2 prepared by the precipitation method using aqueous ammonia as precipitant exhibited the highest catalytic activity both for CO methanation and for CO2 methanation after reduction prior to the catalytic reaction. Chlorine ion was then doped to suppress CO2 conversion. Effect of chlorine doping was investigated. Over the optimal catalyst 40%Ni(Cl(0.2))/CeO2, CO in the H2-rich gas was removed to below 10 ppm with selectivity of 60% or higher at reaction temperatures 230–250 ℃ in the test period of 75 h. CO selective methanation; nickel; ceria; chlorine doping; adsorption; rare earths GAO Zhiming,DAI Qianzi,MA Hongwei,LI Zhanping (1. School of Chemistry; Beijing btstitute of Technology, Beijing 102488, China; 2. Analysis Center; Tsinghua University, Beijing 100084, China) |
ISSN: | 1002-0721 2509-4963 |
DOI: | 10.1016/S1002-0721(16)60156-4 |