A thermodynamic model for blended cements. II: Cement hydrate phases; thermodynamic values and modelling studies

Blended Portland cements are likely to form a substantial proportion of repository materials for the disposal of radioactive waste in the UK. A thermodynamic model has been developed therefore in order to predict the composition of the solid and aqueous phases in blended cements as a function of the...

Full description

Saved in:
Bibliographic Details
Published inJournal of nuclear materials Vol. 190; pp. 315 - 325
Main Authors Bennett, D.G., Read, D., Atkins, M., Glasser, F.P.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.01.1992
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Blended Portland cements are likely to form a substantial proportion of repository materials for the disposal of radioactive waste in the UK. A thermodynamic model has been developed therefore in order to predict the composition of the solid and aqueous phases in blended cements as a function of the bulk cement composition. The model is based on simplifying cement to the system CaO SiO 2 Al 2O 3 SO 4 MgO H 2O, which constitutes 95% of most cement formulations. Solubility data for hydrogarnet and ettringite suggest that they dissolve congruently and that conventional solubility products can be used to model their dissolution. A solubility model for the siliceous hydrogarnet series, based on ideal solid solution on either side of an immiscibility gap, closely matches experimental solubility data. Solubility data for hydrotalcite and gehlenite hydrate are less consistent and indicative of more complex dissolution processes. On the basis of earlier work, an accurate solubility model is described for hydrated calcium silicate gels in the CaO SiO 2 H 2O system. Together, these solubility models form a relatively complete thermodynamic model for blended cements. Model predictions for fully matured cement blends are compared to the compositions of pore fluids extracted from aged cement blends. Departures from expected behaviour occur in alkali-bearing systems and are discussed.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0022-3115
1873-4820
DOI:10.1016/0022-3115(92)90096-4