Thermo-mechanical large deformation characteristics of cutout borne multilayered curved structure: Numerical prediction and experimental validation
The numerical modeling of static large-deformation behavior of the multilayered flat/curved panels with cutouts subjected to thermo-mechanical load is presented in this work. The numerical model includes third-order displacement polynomials. The large-deformation characteristic of the multilayered p...
Saved in:
Published in | International journal of non-linear mechanics Vol. 150; p. 104345 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.04.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The numerical modeling of static large-deformation behavior of the multilayered flat/curved panels with cutouts subjected to thermo-mechanical load is presented in this work. The numerical model includes third-order displacement polynomials. The large-deformation characteristic of the multilayered panel is incorporated using two nonlinear strains (Green–Lagrange and von-Karman). The governing equation is formulated using Hamilton’s principle, and approximate numerical solutions are obtained using the selective integration scheme (Gauss-Quadrature) associated with Picard’s direct iterative method. A generic computational algorithm is developed in MATLAB using isoparametric finite element (FE) steps. The solution accuracy is verified with the published results and experimental data by utilizing the available/fabricated lab-scale test rig. The role of cutout parameters, including the various geometrical parameters on the nonlinear structural responses, is studied for a clear insight into the damaged structural modeling using the temperature-dependent elastic properties of the laminate. In addition, the effect of nonlinear strain terms on the final structural responses is presented. Based on the observation, the applicability of the full geometrical (Green–Lagrange) strain–displacement relation is established.
•Thermomechanical nonlinear deflections of cutout borne structures are computed numerically.•The model is derived using two types of nonlinearity based on higher-order kinematic models.•The solutions are obtained iteratively through MATLAB computational code via higher-order finite element model.•The solution accuracies are verified with published numerical and in-house experimental data. |
---|---|
ISSN: | 0020-7462 1878-5638 |
DOI: | 10.1016/j.ijnonlinmec.2022.104345 |