Mica functionalization for imaging of DNA and protein-DNA complexes with atomic force microscopy
Surface preparation is a key step for reliable and reproducible imaging of DNA and protein-DNA complexes with atomic force microscopy (AFM). This article describes the approaches for chemical functionalization of the mica surface. One approach utilizes 3-aminopropyl-trietoxy silane (APTES), enabling...
Saved in:
Published in | Methods in molecular biology (Clifton, N.J.) Vol. 931; p. 295 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
01.01.2013
|
Subjects | |
Online Access | Get more information |
Cover
Loading…
Summary: | Surface preparation is a key step for reliable and reproducible imaging of DNA and protein-DNA complexes with atomic force microscopy (AFM). This article describes the approaches for chemical functionalization of the mica surface. One approach utilizes 3-aminopropyl-trietoxy silane (APTES), enabling one to obtain a smooth surface termed AP-mica. This surface binds nucleic acids and nucleoprotein complexes in a wide range of ionic strengths, in the absence of divalent cations and in a broad range of pH. Another method utilizes aminopropyl silatrane (APS) to yield an APS-mica surface. The advantage of APS-mica compared with AP-mica is the ability to obtain reliable and reproducible time-lapse images in aqueous solutions. The chapter describes the methodologies for the preparation of AP-mica and APS-mica surfaces and the preparation of samples for AFM imaging. The protocol for synthesis and purification of APS is also provided. The applications are illustrated with a number of examples. |
---|---|
ISSN: | 1940-6029 |
DOI: | 10.1007/978-1-62703-056-4_14 |