Ferrocene-Based Porous Organic Polymer (FPOP): Synthesis, Characterization and an Electrochemical Study
Ferrocene-based porous organic polymers (FPOPs) were prepared from phenol-formaldehyde polymer (Bakelite) and phenol as starting materials; and two possible mechanisms for polymerization were discussed. Solid-state 13C CP-MAS NMR, FTIR, powder XRD, elemental analysis and ICP (Fe, Na, B) were perform...
Saved in:
Published in | Electrochem (Basel, Switzerland) Vol. 3; no. 1; pp. 184 - 197 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.03.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Ferrocene-based porous organic polymers (FPOPs) were prepared from phenol-formaldehyde polymer (Bakelite) and phenol as starting materials; and two possible mechanisms for polymerization were discussed. Solid-state 13C CP-MAS NMR, FTIR, powder XRD, elemental analysis and ICP (Fe, Na, B) were performed to characterize the prepared materials. The two synthetic approaches produced polymers with different pore sizes: the FPOP synthesized through Bakelite presented a higher surface area (52 m2 g−1) when compared to the one obtained by the bottom-up polymerization from phenol (only 5 m2 g−1). Thermogravimetric analysis confirmed the thermal stability of the material, which decomposed at 350 °C. Furthermore, cyclic voltammetry (CV) of the new FPOP on modified electrodes, in ACN and 0.1 M TBAP as an electrolyte, showed fully reversible electron transfer, which is similar to that observed for the ferrocene probe dissolved in the same electrolyte. As a proof-of-concept for an electrochromic device, this novel material was also tested, with a color change detected between yellow/brownish coloration (reduced form) and green/blue coloration (oxidized form). The new hybrid FPOP seems very promising for material science, energy storage and electrochromic applications, as well as for plastic degradation. |
---|---|
ISSN: | 2673-3293 2673-3293 |
DOI: | 10.3390/electrochem3010011 |