Development of a Real-Time NOx Prediction Soft Sensor Algorithm for Power Plants Based on a Hybrid Boost Integration Model
Nitrogen oxides (NOxs) are some of the most important hazardous air pollutants from industry. In China, the annual NOx emission in the waste gas of industrial sources is about 8.957 million tons, while power plants remain the largest anthropogenic source of NOx emissions, and the precise control of...
Saved in:
Published in | Energies (Basel) Vol. 17; no. 19; p. 4926 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.10.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Nitrogen oxides (NOxs) are some of the most important hazardous air pollutants from industry. In China, the annual NOx emission in the waste gas of industrial sources is about 8.957 million tons, while power plants remain the largest anthropogenic source of NOx emissions, and the precise control of NOx in power plants is crucial. However, due to inherent issues with measurement and pipelines in coal-fired power plants, there is typically a delay of about three minutes in NOx measurements, bringing mismatch between its control and measurement. Measuring delays in NOx from power plants can lead to excessive ammonia injection or failure to meet environmental standards for NOx emissions. To address the issue of NOx measurement delays, this study introduced a hybrid boosting model suitable for on-site implementation. The model could serve as a feedforward signal in SCR control, compensating for NOx measurement delays and enabling precise ammonia injection for accurate denitrification in power plants. The model combines generation mechanism and data-driven approaches, enhancing its prediction accuracy through the categorization of time-series data into linear, nonlinear, and exogenous regression components. In this study, a time-based method was proposed for analyzing the correlations between variables in denitration systems and NOx concentrations. This study also introduced a new evaluation indicator, part of R2 (PR2), which focused on the prediction effect at turning points. Finally, the proposed model was applied to actual data from a 330 MW power plant, showing excellent predictive accuracy, particularly for one-minute forecasts. For 3 min prediction, compared to predictions made by ARIMA, the R-squared (R2) and PR2 were increased by 3.6% and 30.6%, respectively, and the mean absolute error (MAE) and mean absolute percentage error (MAPE) were decreased by 9.4% and 9.1%, respectively. These results confirmed the accuracy and applicability of the integrated model for on-site implementation as a 3 min advanced prediction soft sensor in power plants. |
---|---|
ISSN: | 1996-1073 1996-1073 |
DOI: | 10.3390/en17194926 |