Improved tropical cyclone wind speed estimation for microwave altimeter using machine learning

Satellite altimeters can provide excellent global wind speed at 10 m above the sea surface (U10), however, the U10 becomes inaccurate and difficult to measure in tropical cyclone conditions. The violent wind, rough waves and torrential rain manifest an exceptionally complex ocean-atmospheric environ...

Full description

Saved in:
Bibliographic Details
Published inRemote sensing of environment Vol. 301; p. 113961
Main Authors Sharoni, Syarawi M.H., Reba, Mohd Nadzri Md, Lim, Hwee San
Format Journal Article
LanguageEnglish
Published Elsevier Inc 01.02.2024
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Satellite altimeters can provide excellent global wind speed at 10 m above the sea surface (U10), however, the U10 becomes inaccurate and difficult to measure in tropical cyclone conditions. The violent wind, rough waves and torrential rain manifest an exceptionally complex ocean-atmospheric environment for wind estimation. Although the backscatter signal is measured equally well in normal condition, the interpretation is not straightforward in tropical cyclones that requires complex associations with ocean-atmospheric geophysical variables. Typical U10 regression model developed in normal atmospheric conditions would inevitably reduce the estimation quality and encounter high modelling uncertainties from high dimensional input data that provide ill-posed solutions in extreme U10 estimation. However, other secondary parameters simultaneously measured by the altimeter have properties that convey additional atmospheric information to enhance U10 estimation accuracy in storm condition. Therefore, the present study proposes machine learning (ML) approaches based on artificial neural network (ANN), support vector machine (SVM), and Gaussian process regression (GPR) to integrate the multi-dimensional parameters and provide accurate U10 estimates for different parameter combination. Results suggest that the GPR method, considering atmospheric and sea surface related parameters, can provide the highest accuracy of U10 up to 35 ms−1 with quality perseverance against rain contamination. This study highlights the quality improvement of altimeter U10 estimation and the assessment method of ML in dealing with complex ocean-atmospheric interactions. •C-band altimeter data incorporate good wind information in extreme conditions.•Radiometric parameters contain atmospheric disturbance information for wind adjustment.•Machine learning offers the most promising technique to simulate extreme wind.
ISSN:0034-4257
1879-0704
DOI:10.1016/j.rse.2023.113961