A lower bound and several exact results on the d-lucky number
If ℓ:V(G)→N is a vertex labeling of a graph G=(V(G),E(G)), then the d-lucky sum of a vertex u ∈ V(G) is dℓ(u)=dG(u)+∑v∈N(u)ℓ(v). The labeling ℓ is a d-lucky labeling if dℓ(u) ≠ dℓ(v) for every uv ∈ E(G). The d-lucky number ηdl(G) of G is the least positive integer k such that G has a d-lucky labelin...
Saved in:
Published in | Applied mathematics and computation Vol. 366; p. 124760 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
01.02.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | If ℓ:V(G)→N is a vertex labeling of a graph G=(V(G),E(G)), then the d-lucky sum of a vertex u ∈ V(G) is dℓ(u)=dG(u)+∑v∈N(u)ℓ(v). The labeling ℓ is a d-lucky labeling if dℓ(u) ≠ dℓ(v) for every uv ∈ E(G). The d-lucky number ηdl(G) of G is the least positive integer k such that G has a d-lucky labeling V(G) → [k]. A general lower bound on the d-lucky number of a graph in terms of its clique number and related degree invariants is proved. The bound is sharp as demonstrated with an infinite family of corona graphs. The d-lucky number is also determined for the so-called Gm,n-web graphs and graphs obtained by attaching the same number of pendant vertices to the vertices of a generalized cocktail-party graph. |
---|---|
ISSN: | 0096-3003 1873-5649 |
DOI: | 10.1016/j.amc.2019.124760 |