A lower bound and several exact results on the d-lucky number

If ℓ:V(G)→N is a vertex labeling of a graph G=(V(G),E(G)), then the d-lucky sum of a vertex u ∈ V(G) is dℓ(u)=dG(u)+∑v∈N(u)ℓ(v). The labeling ℓ is a d-lucky labeling if dℓ(u) ≠ dℓ(v) for every uv ∈ E(G). The d-lucky number ηdl(G) of G is the least positive integer k such that G has a d-lucky labelin...

Full description

Saved in:
Bibliographic Details
Published inApplied mathematics and computation Vol. 366; p. 124760
Main Authors Klavžar, Sandi, Rajasingh, Indra, Emilet, D. Ahima
Format Journal Article
LanguageEnglish
Published Elsevier Inc 01.02.2020
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:If ℓ:V(G)→N is a vertex labeling of a graph G=(V(G),E(G)), then the d-lucky sum of a vertex u ∈ V(G) is dℓ(u)=dG(u)+∑v∈N(u)ℓ(v). The labeling ℓ is a d-lucky labeling if dℓ(u) ≠ dℓ(v) for every uv ∈ E(G). The d-lucky number ηdl(G) of G is the least positive integer k such that G has a d-lucky labeling V(G) → [k]. A general lower bound on the d-lucky number of a graph in terms of its clique number and related degree invariants is proved. The bound is sharp as demonstrated with an infinite family of corona graphs. The d-lucky number is also determined for the so-called Gm,n-web graphs and graphs obtained by attaching the same number of pendant vertices to the vertices of a generalized cocktail-party graph.
ISSN:0096-3003
1873-5649
DOI:10.1016/j.amc.2019.124760