Modifying the Symbolic Aggregate Approximation Method to Capture Segment Trend Information

The Symbolic Aggregate approXimation (SAX) is a very popular symbolic dimensionality reduction technique of time series data, as it has several advantages over other dimensionality reduction techniques. One of its major advantages is its efficiency, as it uses precomputed distances. The other main a...

Full description

Saved in:
Bibliographic Details
Published inModeling Decisions for Artificial Intelligence pp. 230 - 239
Main Author Muhammad Fuad, Muhammad Marwan
Format Book Chapter
LanguageEnglish
Published Cham Springer International Publishing
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The Symbolic Aggregate approXimation (SAX) is a very popular symbolic dimensionality reduction technique of time series data, as it has several advantages over other dimensionality reduction techniques. One of its major advantages is its efficiency, as it uses precomputed distances. The other main advantage is that in SAX the distance measure defined on the reduced space lower bounds the distance measure defined on the original space. This enables SAX to return exact results in query-by-content tasks. Yet SAX has an inherent drawback, which is its inability to capture segment trend information. Several researchers have attempted to enhance SAX by proposing modifications to include trend information. However, this comes at the expense of giving up on one or more of the advantages of SAX. In this paper we investigate three modifications of SAX to add trend capturing ability to it. These modifications retain the same features of SAX in terms of simplicity, efficiency, as well as the exact results it returns. They are simple procedures based on a different segmentation of the time series than that used in classic-SAX. We test the performance of these three modifications on 45 time series datasets of different sizes, dimensions, and nature, on a classification task and we compare it to that of classic-SAX. The results we obtained show that one of these modifications manages to outperform classic-SAX and that another one slightly gives better results than classic-SAX.
ISBN:9783030575236
3030575233
ISSN:0302-9743
1611-3349
DOI:10.1007/978-3-030-57524-3_19