An Area-Efficient Majority Logic-Based Approximate Adders with Low Delay for Error-Resilient Applications

This paper presents two new inexact sum-based 1-bit approximate full adders (AFAs). The proposed 1-bit approximate adders (PAAs), namely PAA1 and PAA2, are derived based on the majority logic. The layouts of PAAs are designed in quantum cellular automata (QCA) technology using the QCADesigner tool....

Full description

Saved in:
Bibliographic Details
Published inCircuits, systems, and signal processing Vol. 41; no. 9; pp. 4977 - 4997
Main Authors Parameshwara, M. C., Maroof, Naeem
Format Journal Article
LanguageEnglish
Published New York Springer US 01.09.2022
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper presents two new inexact sum-based 1-bit approximate full adders (AFAs). The proposed 1-bit approximate adders (PAAs), namely PAA1 and PAA2, are derived based on the majority logic. The layouts of PAAs are designed in quantum cellular automata (QCA) technology using the QCADesigner tool. To assess the performance of PAAs, we compare them against the reported AFAs in terms of various design metrics, such as the total area, delay, and performance. The comparison results show that the PAA1 and PAA2, having an area of 0.02  μ m 2 and 0.04 μ m 2 , provide area savings of 60% and 20%, respectively, compared with the lowest-area AFA reported in the literature. Also, the PAA1 and PAA2 have an equal delay of 0.5 clock cycles, that is, 33.33% less as compared to the AFA with the lowest delay. The designs are analyzed in terms of image quality metrics for image processing applications. Besides area efficiency and delay performance, on average, PAA1 provides the worst PSNR/SNR, while PAA2 provides the best PSNR/SNR compared to the other state-of-the-art approximate adders.
AbstractList This paper presents two new inexact sum-based 1-bit approximate full adders (AFAs). The proposed 1-bit approximate adders (PAAs), namely PAA1 and PAA2, are derived based on the majority logic. The layouts of PAAs are designed in quantum cellular automata (QCA) technology using the QCADesigner tool. To assess the performance of PAAs, we compare them against the reported AFAs in terms of various design metrics, such as the total area, delay, and performance. The comparison results show that the PAA1 and PAA2, having an area of 0.02  μ m 2 and 0.04 μ m 2 , provide area savings of 60% and 20%, respectively, compared with the lowest-area AFA reported in the literature. Also, the PAA1 and PAA2 have an equal delay of 0.5 clock cycles, that is, 33.33% less as compared to the AFA with the lowest delay. The designs are analyzed in terms of image quality metrics for image processing applications. Besides area efficiency and delay performance, on average, PAA1 provides the worst PSNR/SNR, while PAA2 provides the best PSNR/SNR compared to the other state-of-the-art approximate adders.
This paper presents two new inexact sum-based 1-bit approximate full adders (AFAs). The proposed 1-bit approximate adders (PAAs), namely PAA1 and PAA2, are derived based on the majority logic. The layouts of PAAs are designed in quantum cellular automata (QCA) technology using the QCADesigner tool. To assess the performance of PAAs, we compare them against the reported AFAs in terms of various design metrics, such as the total area, delay, and performance. The comparison results show that the PAA1 and PAA2, having an area of 0.02 μm2 and 0.04 μm2, provide area savings of 60% and 20%, respectively, compared with the lowest-area AFA reported in the literature. Also, the PAA1 and PAA2 have an equal delay of 0.5 clock cycles, that is, 33.33% less as compared to the AFA with the lowest delay. The designs are analyzed in terms of image quality metrics for image processing applications. Besides area efficiency and delay performance, on average, PAA1 provides the worst PSNR/SNR, while PAA2 provides the best PSNR/SNR compared to the other state-of-the-art approximate adders.
Author Maroof, Naeem
Parameshwara, M. C.
Author_xml – sequence: 1
  givenname: M. C.
  orcidid: 0000-0002-8401-8114
  surname: Parameshwara
  fullname: Parameshwara, M. C.
  email: pmcvit@gmail.com
  organization: Department of Electronics and Communication, Vemana Institute of Technology, Koramangala
– sequence: 2
  givenname: Naeem
  surname: Maroof
  fullname: Maroof, Naeem
  organization: Electrical and Electronic Engineering Department, College of Engineering, University of Jeddah
BookMark eNp9kEtLJDEUhYM4YOv4B1wFXEfzqiS1LLV9QMvAMAOzCzF1S9OUlTaJtP3vJ3YLggsXl7s53z3nnkO0P8UJEDph9IxRqs8zpVRIQjmvQ5kkag_NWCMYaYw2-2hGuTaEGvbvAB3mvKSUtbLlMxS6CXcJHJkPQ_ABpoLv3TKmUDZ4ER-DJxcuQ4-71SrFt_DsCuCu7yFlvA7lqWrW-ApGt8FDTHieUkzkN-Qwbk9VagzelRCn_BP9GNyY4fhjH6G_1_M_l7dk8evm7rJbEM9lW0jbS2o4gOYgnZRePnDRKq0Na4ZecvXQ66HlXgDTQnkQjWdDL4SDRptGMSOO0Onubg388gq52GV8TVO1tFy13CjaqHcV36l8ijknGOwq1e_SxjJq3yu1u0ptrdRuK7WqQuYL5EPZfleSC-P3qNihufpMj5A-U31D_QffkIx5
CitedBy_id crossref_primary_10_1007_s11082_023_05604_z
crossref_primary_10_1016_j_rineng_2024_102598
crossref_primary_10_1109_TNANO_2023_3326199
crossref_primary_10_1109_LES_2024_3395900
Cites_doi 10.1109/WiSPNET.2016.7566219
10.1088/0957-4484/4/1/004
10.1109/TNANO.2011.2158006
10.1109/TENCON.2011.6129222.
10.1109/TNANO.2003.820815
10.1109/ISCAS.2018.8350962
10.1109/ISCAS.2017.8050819
10.1109/NANO.2003.1231818
10.1142/S0218126621502352
10.1109/ISSCC.2016.7417888
10.3850/9783981537079_0042
10.1109/MSPEC.2016.7551335
10.1109/92.974895
10.1021/ja026856g
10.1109/TCSI.2009.2027626
10.1063/1.356375
10.1109/MCD.2005.1388765
10.1145/3232195.3232216
10.1109/NANO.2006.247647
10.1109/TVLSI.2018.2822278
10.1109/ICCT.2008.4716260
10.1109/TC.2009.21
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.
DBID AAYXX
CITATION
3V.
7SC
7SP
7XB
88I
8AL
8AO
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
L7M
L~C
L~D
M0N
M2P
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
S0W
DOI 10.1007/s00034-022-02014-6
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection (ProQuest)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Science Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection (ProQuest)
ProQuest Central Basic
DELNET Engineering & Technology Collection
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
ProQuest Computing
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest DELNET Engineering and Technology Collection
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList
Computer Science Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1531-5878
EndPage 4997
ExternalDocumentID 10_1007_s00034_022_02014_6
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29B
29~
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
88I
8AO
8FE
8FG
8FW
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHQN
ABJCF
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCEE
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6V
K7-
KDC
KOV
KOW
L6V
LAS
LLZTM
M0N
M2P
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9P
PF0
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZK
S0W
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCV
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7X
Z7Z
Z83
Z88
Z8M
Z8N
Z8R
Z8T
Z8W
Z92
ZMTXR
_50
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7SC
7SP
7XB
8AL
8FD
8FK
ABRTQ
JQ2
L7M
L~C
L~D
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c249t-9d4082ee72e4a44c4b239677815fd426bd7f92c3e1736ce35c1fd33ae57856183
IEDL.DBID BENPR
ISSN 0278-081X
IngestDate Sat Aug 16 15:53:05 EDT 2025
Thu Apr 24 22:58:15 EDT 2025
Tue Jul 01 00:50:52 EDT 2025
Fri Feb 21 02:44:57 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords Error-tolerant
Approximate adder
QCA
Majority logic
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c249t-9d4082ee72e4a44c4b239677815fd426bd7f92c3e1736ce35c1fd33ae57856183
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8401-8114
PQID 2692860568
PQPubID 30136
PageCount 21
ParticipantIDs proquest_journals_2692860568
crossref_primary_10_1007_s00034_022_02014_6
crossref_citationtrail_10_1007_s00034_022_02014_6
springer_journals_10_1007_s00034_022_02014_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220900
2022-09-00
20220901
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 9
  year: 2022
  text: 20220900
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Cambridge
PublicationSubtitle CSSP
PublicationTitle Circuits, systems, and signal processing
PublicationTitleAbbrev Circuits Syst Signal Process
PublicationYear 2022
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References RairighDLimits of CMOS Technology Scaling and Technologies Beyond-CMOS2005PiscatawayInstitute of Electrical and Electronics Inc.
B. Aravinth, L.J.A. Marcilin, Implementation of coplanar approximate adders in QCA, in 2016 International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET), pp. 680–684 (2016)
W.M. Holt: 1.1 Moore’s law: a path going forward, in IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, pp. 8–13 (2016). https://doi.org/10.1109/ISSCC.2016.7417888
PudiVSridharanKLow complexity design of ripple Carry and Brent-Kung adders in QCAIEEE Trans. Nanotechnol.201211110511910.1109/TNANO.2011.2158006
LentCSTougawPDPorodWBernsteinGHQuantum cellular automataNanotechnology19934495710.1088/0957-4484/4/1/004
M.C. Parameshwara, Approximate full adders for energy efficient image processing applications. J. Circuits Syst. Comput. 30(13) (early access)
DallooANajafiAGarcia-OrtizASystematic design of an approximate adder: the optimized lower part constant-OR adderIEEE Trans. Very Large Scale Integr. (VLSI) Syst.20182681595159910.1109/TVLSI.2018.2822278
ChoHSwartzlanderEEAdder and multiplier design in quantum-dot cellular automataIEEE Trans. Comput.2009586721727267520110.1109/TC.2009.21
TougawPDLentCSLogical devices implemented using quantum cellular automataJ. Appl. Phys.19947531818182410.1063/1.356375
HegdeRShanbhagNRSoft digital signal processingIEEE Trans. Very Large Scale Integr. (VLSI) Syst.20019681382310.1109/92.974895
B. Sen, T. Adak, A.S. Anand, B.K. Sikdar, Synthesis of reversible universal QCA gate structure for energy efficient digital design, in TENCON 2011—2011 IEEE Region 10 Conference, Bali, 2011, pp. 806–810. https://doi.org/10.1109/TENCON.2011.6129222.
ZareeiZNaviKKeshavarziyanPLow-power, high-speed 1-bit inexact full adder cell designs applicable to low-energy image processingInt. J. Electron.20181053375384
LentCSIsaksenBLiebermanMMolecular quantum-dot cellular automataJ. Am. Chem. Soc.200312541056106310.1021/ja026856g
V. Vankamamidi, M. Ottavi, F. Lombardi, Clocking and cell placement for QCA, in Sixth IEEE Conference on Nanotechnology, 2006, pp. 343–346 (2006)
R. Courtland, Transistors could stop shrinking in 2021: a key industry report forecasts an end to traditional scaling of transistors, IEEE Spectrum (2016). https://spectrum.ieee.org/semiconductors/devices/transistors-could-stop-shrinking-in-2021
SkotnickiTHutchbyJATsu-Jae KingH-PWongF. BoeufThe end of CMOS scaling: toward the introduction of new materials and structural changes to improve MOSFET performanceIEEE Circuits and Devices Magazine2005211162610.1109/MCD.2005.1388765
MahdianiHRAhmadiAFakhraieSMLucasCBio-inspired imprecise computational blocks for efficient VLSI implementation of soft-computing applicationsIEEE Trans. Circuits Syst. I Regul. Pap.2010574850862275668010.1109/TCSI.2009.2027626
W. Wang, K. Walus, G.A. Jullien, Quantum-dot cellular automata adders, in 2003 Third IEEE Conference on Nanotechnology, 2003. IEEE-NANO 2003., San Francisco, CA, USA, 2003, vol. 2, pp. 461–464
AraniIERezaiANovel circuit design of serial-parallel multiplier in quantum-dot cellular automata technologyJ. Comput. Electron.2018719
C. Labrado, H. Thapliyal, F. Lombardi, Design of majority logic based approximate arithmetic circuits, in IEEE International Symposium on Circuits and Systems (ISCAS), 2017, pp. 1–4 (2017)
K. Walus, A. Vetteth, G. Jullien, V. Dimitrov, RAM design using quantum-dot cellular automata, in Tech Proceedings of Nanotechnology Conference and Trade Show2, 160–163 (2003)
WalusKDysartTJJullienGABudimanRAQCADesigner: a rapid design and Simulation tool for quantum-dot cellular automataIEEE Trans. Nanotechnol.200431263110.1109/TNANO.2003.820815
Y. Xia, K. Qiu, Design and application of universal logic gate based on quantum-dot cellular automata, in 2008 11th IEEE International Conference on Communication Technology, Hangzhou, 2008, pp. 335–338. https://doi.org/10.1109/ICCT.2008.4716260
http://www.imageprocessingplace.com
NASA: Bit-serial adder based on quantum dots, Washington, DC [Online]. Available http://www.nasatech.com/Briefs/Jan03/NPO20869.html
R. Zhang, K. Walus, W. Wang, G.A. Jullien, Performance comparison of quantum-dot cellular automata adders, in 2005 IEEE International Symposium on Circuits and Systems, Kobe, 2005, vol. 3, pp. 2522–2526
T. Zhang, W. Liu, E. McLarnon, M. O’Neill, F. Lombardi, Design of majority logic (ML) based approximate full adders, in IEEE International Symposium on Circuits and Systems (ISCAS), 2018, pp. 1–5 (2018)
H.A.F. Almurib, T.N. Kumar, F. Lombardi, Inexact designs for approximate low power addition by cell replacement, in Proceedings of IEEE International Conference on Design, Automation and Test in Europe Conference and Exhibition (DATE), Dresden, Germany, pp. 660–665 (2016)
O. Liolis, V.A. Mardiris, G.C. Sirakoulis, I.G. Karafyllidis: Quantum-dot cellular automata RAM design using crossbar architecture, in IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH). Athens, 2018, pp. 1–5 (2018)
International Road Map for Devices and Systems (IRDS): Beyond CMOS, 2020 Edition, available at https://irds.ieee.org/images/files/pdf/2020/2020IRDS_MM.pdf
2014_CR9
A Dalloo (2014_CR6) 2018; 26
IE Arani (2014_CR2) 2018; 7
2014_CR5
CS Lent (2014_CR12) 2003; 125
2014_CR8
2014_CR1
2014_CR3
K Walus (2014_CR26) 2004; 3
2014_CR14
2014_CR17
2014_CR16
2014_CR11
2014_CR10
V Pudi (2014_CR18) 2012; 11
2014_CR30
CS Lent (2014_CR13) 1993; 4
D Rairigh (2014_CR19) 2005
PD Tougaw (2014_CR22) 1994; 75
HR Mahdiani (2014_CR15) 2010; 57
T Skotnicki (2014_CR21) 2005; 21
2014_CR25
H Cho (2014_CR4) 2009; 58
2014_CR28
2014_CR27
2014_CR24
2014_CR23
2014_CR20
Z Zareei (2014_CR29) 2018; 105
R Hegde (2014_CR7) 2001; 9
References_xml – reference: V. Vankamamidi, M. Ottavi, F. Lombardi, Clocking and cell placement for QCA, in Sixth IEEE Conference on Nanotechnology, 2006, pp. 343–346 (2006)
– reference: M.C. Parameshwara, Approximate full adders for energy efficient image processing applications. J. Circuits Syst. Comput. 30(13) (early access)
– reference: TougawPDLentCSLogical devices implemented using quantum cellular automataJ. Appl. Phys.19947531818182410.1063/1.356375
– reference: ChoHSwartzlanderEEAdder and multiplier design in quantum-dot cellular automataIEEE Trans. Comput.2009586721727267520110.1109/TC.2009.21
– reference: PudiVSridharanKLow complexity design of ripple Carry and Brent-Kung adders in QCAIEEE Trans. Nanotechnol.201211110511910.1109/TNANO.2011.2158006
– reference: WalusKDysartTJJullienGABudimanRAQCADesigner: a rapid design and Simulation tool for quantum-dot cellular automataIEEE Trans. Nanotechnol.200431263110.1109/TNANO.2003.820815
– reference: K. Walus, A. Vetteth, G. Jullien, V. Dimitrov, RAM design using quantum-dot cellular automata, in Tech Proceedings of Nanotechnology Conference and Trade Show2, 160–163 (2003)
– reference: International Road Map for Devices and Systems (IRDS): Beyond CMOS, 2020 Edition, available at https://irds.ieee.org/images/files/pdf/2020/2020IRDS_MM.pdf
– reference: R. Courtland, Transistors could stop shrinking in 2021: a key industry report forecasts an end to traditional scaling of transistors, IEEE Spectrum (2016). https://spectrum.ieee.org/semiconductors/devices/transistors-could-stop-shrinking-in-2021
– reference: HegdeRShanbhagNRSoft digital signal processingIEEE Trans. Very Large Scale Integr. (VLSI) Syst.20019681382310.1109/92.974895
– reference: http://www.imageprocessingplace.com
– reference: SkotnickiTHutchbyJATsu-Jae KingH-PWongF. BoeufThe end of CMOS scaling: toward the introduction of new materials and structural changes to improve MOSFET performanceIEEE Circuits and Devices Magazine2005211162610.1109/MCD.2005.1388765
– reference: H.A.F. Almurib, T.N. Kumar, F. Lombardi, Inexact designs for approximate low power addition by cell replacement, in Proceedings of IEEE International Conference on Design, Automation and Test in Europe Conference and Exhibition (DATE), Dresden, Germany, pp. 660–665 (2016)
– reference: W.M. Holt: 1.1 Moore’s law: a path going forward, in IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, pp. 8–13 (2016). https://doi.org/10.1109/ISSCC.2016.7417888
– reference: LentCSTougawPDPorodWBernsteinGHQuantum cellular automataNanotechnology19934495710.1088/0957-4484/4/1/004
– reference: O. Liolis, V.A. Mardiris, G.C. Sirakoulis, I.G. Karafyllidis: Quantum-dot cellular automata RAM design using crossbar architecture, in IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH). Athens, 2018, pp. 1–5 (2018)
– reference: DallooANajafiAGarcia-OrtizASystematic design of an approximate adder: the optimized lower part constant-OR adderIEEE Trans. Very Large Scale Integr. (VLSI) Syst.20182681595159910.1109/TVLSI.2018.2822278
– reference: C. Labrado, H. Thapliyal, F. Lombardi, Design of majority logic based approximate arithmetic circuits, in IEEE International Symposium on Circuits and Systems (ISCAS), 2017, pp. 1–4 (2017)
– reference: MahdianiHRAhmadiAFakhraieSMLucasCBio-inspired imprecise computational blocks for efficient VLSI implementation of soft-computing applicationsIEEE Trans. Circuits Syst. I Regul. Pap.2010574850862275668010.1109/TCSI.2009.2027626
– reference: RairighDLimits of CMOS Technology Scaling and Technologies Beyond-CMOS2005PiscatawayInstitute of Electrical and Electronics Inc.
– reference: LentCSIsaksenBLiebermanMMolecular quantum-dot cellular automataJ. Am. Chem. Soc.200312541056106310.1021/ja026856g
– reference: R. Zhang, K. Walus, W. Wang, G.A. Jullien, Performance comparison of quantum-dot cellular automata adders, in 2005 IEEE International Symposium on Circuits and Systems, Kobe, 2005, vol. 3, pp. 2522–2526
– reference: B. Aravinth, L.J.A. Marcilin, Implementation of coplanar approximate adders in QCA, in 2016 International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET), pp. 680–684 (2016)
– reference: Y. Xia, K. Qiu, Design and application of universal logic gate based on quantum-dot cellular automata, in 2008 11th IEEE International Conference on Communication Technology, Hangzhou, 2008, pp. 335–338. https://doi.org/10.1109/ICCT.2008.4716260
– reference: ZareeiZNaviKKeshavarziyanPLow-power, high-speed 1-bit inexact full adder cell designs applicable to low-energy image processingInt. J. Electron.20181053375384
– reference: T. Zhang, W. Liu, E. McLarnon, M. O’Neill, F. Lombardi, Design of majority logic (ML) based approximate full adders, in IEEE International Symposium on Circuits and Systems (ISCAS), 2018, pp. 1–5 (2018)
– reference: B. Sen, T. Adak, A.S. Anand, B.K. Sikdar, Synthesis of reversible universal QCA gate structure for energy efficient digital design, in TENCON 2011—2011 IEEE Region 10 Conference, Bali, 2011, pp. 806–810. https://doi.org/10.1109/TENCON.2011.6129222.
– reference: W. Wang, K. Walus, G.A. Jullien, Quantum-dot cellular automata adders, in 2003 Third IEEE Conference on Nanotechnology, 2003. IEEE-NANO 2003., San Francisco, CA, USA, 2003, vol. 2, pp. 461–464
– reference: AraniIERezaiANovel circuit design of serial-parallel multiplier in quantum-dot cellular automata technologyJ. Comput. Electron.2018719
– reference: NASA: Bit-serial adder based on quantum dots, Washington, DC [Online]. Available http://www.nasatech.com/Briefs/Jan03/NPO20869.html
– ident: 2014_CR3
  doi: 10.1109/WiSPNET.2016.7566219
– volume: 4
  start-page: 49
  year: 1993
  ident: 2014_CR13
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/4/1/004
– volume: 11
  start-page: 105
  issue: 1
  year: 2012
  ident: 2014_CR18
  publication-title: IEEE Trans. Nanotechnol.
  doi: 10.1109/TNANO.2011.2158006
– ident: 2014_CR20
  doi: 10.1109/TENCON.2011.6129222.
– volume-title: Limits of CMOS Technology Scaling and Technologies Beyond-CMOS
  year: 2005
  ident: 2014_CR19
– volume: 3
  start-page: 26
  issue: 1
  year: 2004
  ident: 2014_CR26
  publication-title: IEEE Trans. Nanotechnol.
  doi: 10.1109/TNANO.2003.820815
– ident: 2014_CR30
  doi: 10.1109/ISCAS.2018.8350962
– ident: 2014_CR11
  doi: 10.1109/ISCAS.2017.8050819
– ident: 2014_CR25
  doi: 10.1109/NANO.2003.1231818
– ident: 2014_CR9
– volume: 7
  start-page: 1
  year: 2018
  ident: 2014_CR2
  publication-title: J. Comput. Electron.
– ident: 2014_CR16
– ident: 2014_CR10
– ident: 2014_CR17
  doi: 10.1142/S0218126621502352
– volume: 105
  start-page: 375
  issue: 3
  year: 2018
  ident: 2014_CR29
  publication-title: Int. J. Electron.
– ident: 2014_CR24
– ident: 2014_CR28
– ident: 2014_CR8
  doi: 10.1109/ISSCC.2016.7417888
– ident: 2014_CR1
  doi: 10.3850/9783981537079_0042
– ident: 2014_CR5
  doi: 10.1109/MSPEC.2016.7551335
– volume: 9
  start-page: 813
  issue: 6
  year: 2001
  ident: 2014_CR7
  publication-title: IEEE Trans. Very Large Scale Integr. (VLSI) Syst.
  doi: 10.1109/92.974895
– volume: 125
  start-page: 1056
  issue: 4
  year: 2003
  ident: 2014_CR12
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja026856g
– volume: 57
  start-page: 850
  issue: 4
  year: 2010
  ident: 2014_CR15
  publication-title: IEEE Trans. Circuits Syst. I Regul. Pap.
  doi: 10.1109/TCSI.2009.2027626
– volume: 75
  start-page: 1818
  issue: 3
  year: 1994
  ident: 2014_CR22
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.356375
– volume: 21
  start-page: 16
  issue: 1
  year: 2005
  ident: 2014_CR21
  publication-title: IEEE Circuits and Devices Magazine
  doi: 10.1109/MCD.2005.1388765
– ident: 2014_CR14
  doi: 10.1145/3232195.3232216
– ident: 2014_CR23
  doi: 10.1109/NANO.2006.247647
– volume: 26
  start-page: 1595
  issue: 8
  year: 2018
  ident: 2014_CR6
  publication-title: IEEE Trans. Very Large Scale Integr. (VLSI) Syst.
  doi: 10.1109/TVLSI.2018.2822278
– ident: 2014_CR27
  doi: 10.1109/ICCT.2008.4716260
– volume: 58
  start-page: 721
  issue: 6
  year: 2009
  ident: 2014_CR4
  publication-title: IEEE Trans. Comput.
  doi: 10.1109/TC.2009.21
SSID ssj0019492
Score 2.3193169
Snippet This paper presents two new inexact sum-based 1-bit approximate full adders (AFAs). The proposed 1-bit approximate adders (PAAs), namely PAA1 and PAA2, are...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4977
SubjectTerms Adding circuits
Cellular automata
Circuits and Systems
Delay
Design
Electrical Engineering
Electronics and Microelectronics
Engineering
Image processing
Image quality
Instrumentation
Signal,Image and Speech Processing
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagLDAgnqJQkAc2sNQktmuPAVpVSGVAVOoWxY9IRVWKkiLg33N2k7QgQGL2xcP58X2XO3-H0CWTSsNOskRqCFFoGBgilTSE8yztylQIplxGd_TAh2N6P2GT6lFYWVe71ylJf1M3j928lgpx1edAcQJK-CbaYhC7u0KucRg3uQNJfStkl1IjAHiT6qnMz3N8haMVx_yWFvVoM9hDuxVNxPFyXffRhs0P0M6aeOAhmsY5jNuU9L0KBIAHHqXPc9eMDrsOyprcAEIZHDvV8PcpMFOLY6cXUmL38xVs3vCdnaUfGHgr7hfFvCCPtpzO_FTxWmL7CI0H_afbIakaJxAN0dSCSOPaSFvbCy1NKdVUhZF0SnEBywxAsjK9TIY6skEv4tpGTAeZiaLUOuUbDof8GLXyeW5PELYsNaIrBTWKUYByKYQCUsIizjJmItpGQe2_RFeq4q65xSxp9JC9zxPweeJ9nvA2umq-eVlqavxp3amXJanOV5mEXIYCIjEu2ui6XqrV8O-znf7P_Axth363uKKyDmotild7DixkoS78pvsEiajQFQ
  priority: 102
  providerName: Springer Nature
Title An Area-Efficient Majority Logic-Based Approximate Adders with Low Delay for Error-Resilient Applications
URI https://link.springer.com/article/10.1007/s00034-022-02014-6
https://www.proquest.com/docview/2692860568
Volume 41
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NTzMhEJ5oe9GD8TPWj4aDNyW6u0DhZFbdajQaY2xST5tdYJO-aVrftkb99w5IWzXR68JyGAbmgRmeB-CAq1KjJ1mqNB5RWBwZqkplqBBVcaIKKXnpMrq3d-Kqw667vBsu3MahrHK6J_qN2gy1uyM_joWKJWJvIU-f_1OnGuWyq0FCYxHquAVLWYP6WXZ3_zDLIyjmZZFdeo1i8OuGZzP-8ZznZqGumh0hU8So-B6a5njzR4rUR572KqwEyEjSzzlegwU7WIflL0SCG9BLB9huC5p5RggMJOS2-Dd0wnTEqSlreobRypDUMYi_9RClWpI67pAxcRex2OeVXNh-8U4Qw5JsNBqO6IMd9_p-qPRLknsTOu3s8fyKBhEFqvFkNaHKOElpa1uxZQVjmpVxohxrXMQrg-G5NK1KxTqxUSsR2iZcR5VJksI6FhyBC34LaoPhwG4Dsbww8kRJZkrOMKwrKUsEKDwRvOImYQ2IpvbLdWAYd0IX_XzGjextnqPNc2_zXDTgcPbP8ye_xp-996bTkoe1Ns7nntGAo-lUzZt_H23n79F2YSn23uEKyvagNhm92H1EIJOyCYuyfdmEenr5dJM1g9Ph106cfgB_-tgx
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NTxsxEB1ROLQ9VP1UQ2nrQzlRq6y_sj6galuShkI4VCDltt21vVKqKKFJEOVP9Tcy4-wmgAQ3zuudw3jsefZ43gP4pG3pMJICtw6PKEokntvSem5MVezaIk11SRXd_rHpnaqfAz1Yg_9NLww9q2z2xLhR-4mjO_IvwliRIvY26dezv5xUo6i62khoLMLiMFxe4JFttnewj_O7LUS3c_K9x2tVAe7wqDHn1pPGcghtEVShlFOlkJZo1BJdecxXpW9XVjgZkrY0LkjtkspLWQSihTG4AtDuI9hQEjM5daZ3fyyrFlZFEWYq5nFMtYO6SSe26kUmGE5v5xGgJYqbm4lwhW5vFWRjnus-h2c1QGXZIqJewFoYv4Sn12gLX8EwG-P3UPBO5J_AtMX6xZ8JyeAx0m52_BvmRs8y4iv_N0RMHFhGTCUzRte-OOaC7YdRcckQMbPOdDqZ8l9hNhxFU9m1kvprOH0Q576B9fFkHN4CC7rw6a5NlS-1QhBh07REOKSl0ZX2UrUgafyXu5rPnGQ1RvmSiTn6PEef59HnuWnBzvKfswWbx72jt5ppyeuVPctXcdiCz81UrT7fbW3zfmsf4XHvpH-UHx0cH76DJyJGCj1l24L1-fQ8vEfsMy8_xIBj8PuhI_wKi_4PNQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3BThsxEB3RIFXtoSqlFWkp-FBO1IL12s76UKGFJIICEUJFym27a3ulVFFCk1SUX-vXMePsJoBUbpzXO4fxs-eNx34D8EWZwiKSPDcWUxQpIsdNYRzXusz3TZ4kqqCK7nlPH1_J733VX4F_9VsYulZZ74lho3ZjS2fke0IbkSD31sleWV2LuGh3D65_c-ogRZXWup3GHCKn_vYG07fpt5M2zvWOEN3Oj6NjXnUY4BbTjhk3jvote98SXuZSWlmI2JCkWqRKh7GrcK3SCBv7qBVr62Nlo9LFce5JIkbjakC7L2C1RVlRA1YPO72Ly0UNw8jQkplKexwDb796shMe7gVdGE436ZGuRZLrh2FxyXUflWdD1Ou-hTcVXWXpHF9rsOJH7-D1PRHDdRikI_zuc94JahQYxNh5_mtMTfEYdXK2_BAjpWMpqZf_HSBD9iwl3ZIpo0NgHHPD2n6Y3zLkz6wzmYwn_NJPB8NgKr1XYH8PV8_i3g_QGI1HfgOYV7lL9k0iXaEkUgqTJAWSIxVrVSoXyyZEtf8yW6mbU5ONYbbQZQ4-z9DnWfB5ppuwu_jneq7t8eTozXpasmqdT7MlKpvwtZ6q5ef_W_v4tLVteInozs5Oeqef4JUIQKF7bZvQmE3--M9IhGbFVoU4Bj-fG-R3AQoUxw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Area-Efficient+Majority+Logic-Based+Approximate+Adders+with+Low+Delay+for+Error-Resilient+Applications&rft.jtitle=Circuits%2C+systems%2C+and+signal+processing&rft.au=Parameshwara%2C+M.+C&rft.au=Maroof%2C+Naeem&rft.date=2022-09-01&rft.pub=Springer+Nature+B.V&rft.issn=0278-081X&rft.eissn=1531-5878&rft.volume=41&rft.issue=9&rft.spage=4977&rft.epage=4997&rft_id=info:doi/10.1007%2Fs00034-022-02014-6&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-081X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-081X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-081X&client=summon