An Area-Efficient Majority Logic-Based Approximate Adders with Low Delay for Error-Resilient Applications
This paper presents two new inexact sum-based 1-bit approximate full adders (AFAs). The proposed 1-bit approximate adders (PAAs), namely PAA1 and PAA2, are derived based on the majority logic. The layouts of PAAs are designed in quantum cellular automata (QCA) technology using the QCADesigner tool....
Saved in:
Published in | Circuits, systems, and signal processing Vol. 41; no. 9; pp. 4977 - 4997 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.09.2022
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper presents two new inexact sum-based 1-bit approximate full adders (AFAs). The proposed 1-bit approximate adders (PAAs), namely PAA1 and PAA2, are derived based on the majority logic. The layouts of PAAs are designed in quantum cellular automata (QCA) technology using the QCADesigner tool. To assess the performance of PAAs, we compare them against the reported AFAs in terms of various design metrics, such as the total area, delay, and performance. The comparison results show that the PAA1 and PAA2, having an area of 0.02
μ
m
2
and 0.04
μ
m
2
, provide area savings of 60% and 20%, respectively, compared with the lowest-area AFA reported in the literature. Also, the PAA1 and PAA2 have an equal delay of 0.5 clock cycles, that is, 33.33% less as compared to the AFA with the lowest delay. The designs are analyzed in terms of image quality metrics for image processing applications. Besides area efficiency and delay performance, on average, PAA1 provides the worst PSNR/SNR, while PAA2 provides the best PSNR/SNR compared to the other state-of-the-art approximate adders. |
---|---|
AbstractList | This paper presents two new inexact sum-based 1-bit approximate full adders (AFAs). The proposed 1-bit approximate adders (PAAs), namely PAA1 and PAA2, are derived based on the majority logic. The layouts of PAAs are designed in quantum cellular automata (QCA) technology using the QCADesigner tool. To assess the performance of PAAs, we compare them against the reported AFAs in terms of various design metrics, such as the total area, delay, and performance. The comparison results show that the PAA1 and PAA2, having an area of 0.02
μ
m
2
and 0.04
μ
m
2
, provide area savings of 60% and 20%, respectively, compared with the lowest-area AFA reported in the literature. Also, the PAA1 and PAA2 have an equal delay of 0.5 clock cycles, that is, 33.33% less as compared to the AFA with the lowest delay. The designs are analyzed in terms of image quality metrics for image processing applications. Besides area efficiency and delay performance, on average, PAA1 provides the worst PSNR/SNR, while PAA2 provides the best PSNR/SNR compared to the other state-of-the-art approximate adders. This paper presents two new inexact sum-based 1-bit approximate full adders (AFAs). The proposed 1-bit approximate adders (PAAs), namely PAA1 and PAA2, are derived based on the majority logic. The layouts of PAAs are designed in quantum cellular automata (QCA) technology using the QCADesigner tool. To assess the performance of PAAs, we compare them against the reported AFAs in terms of various design metrics, such as the total area, delay, and performance. The comparison results show that the PAA1 and PAA2, having an area of 0.02 μm2 and 0.04 μm2, provide area savings of 60% and 20%, respectively, compared with the lowest-area AFA reported in the literature. Also, the PAA1 and PAA2 have an equal delay of 0.5 clock cycles, that is, 33.33% less as compared to the AFA with the lowest delay. The designs are analyzed in terms of image quality metrics for image processing applications. Besides area efficiency and delay performance, on average, PAA1 provides the worst PSNR/SNR, while PAA2 provides the best PSNR/SNR compared to the other state-of-the-art approximate adders. |
Author | Maroof, Naeem Parameshwara, M. C. |
Author_xml | – sequence: 1 givenname: M. C. orcidid: 0000-0002-8401-8114 surname: Parameshwara fullname: Parameshwara, M. C. email: pmcvit@gmail.com organization: Department of Electronics and Communication, Vemana Institute of Technology, Koramangala – sequence: 2 givenname: Naeem surname: Maroof fullname: Maroof, Naeem organization: Electrical and Electronic Engineering Department, College of Engineering, University of Jeddah |
BookMark | eNp9kEtLJDEUhYM4YOv4B1wFXEfzqiS1LLV9QMvAMAOzCzF1S9OUlTaJtP3vJ3YLggsXl7s53z3nnkO0P8UJEDph9IxRqs8zpVRIQjmvQ5kkag_NWCMYaYw2-2hGuTaEGvbvAB3mvKSUtbLlMxS6CXcJHJkPQ_ABpoLv3TKmUDZ4ER-DJxcuQ4-71SrFt_DsCuCu7yFlvA7lqWrW-ApGt8FDTHieUkzkN-Qwbk9VagzelRCn_BP9GNyY4fhjH6G_1_M_l7dk8evm7rJbEM9lW0jbS2o4gOYgnZRePnDRKq0Na4ZecvXQ66HlXgDTQnkQjWdDL4SDRptGMSOO0Onubg388gq52GV8TVO1tFy13CjaqHcV36l8ijknGOwq1e_SxjJq3yu1u0ptrdRuK7WqQuYL5EPZfleSC-P3qNihufpMj5A-U31D_QffkIx5 |
CitedBy_id | crossref_primary_10_1007_s11082_023_05604_z crossref_primary_10_1016_j_rineng_2024_102598 crossref_primary_10_1109_TNANO_2023_3326199 crossref_primary_10_1109_LES_2024_3395900 |
Cites_doi | 10.1109/WiSPNET.2016.7566219 10.1088/0957-4484/4/1/004 10.1109/TNANO.2011.2158006 10.1109/TENCON.2011.6129222. 10.1109/TNANO.2003.820815 10.1109/ISCAS.2018.8350962 10.1109/ISCAS.2017.8050819 10.1109/NANO.2003.1231818 10.1142/S0218126621502352 10.1109/ISSCC.2016.7417888 10.3850/9783981537079_0042 10.1109/MSPEC.2016.7551335 10.1109/92.974895 10.1021/ja026856g 10.1109/TCSI.2009.2027626 10.1063/1.356375 10.1109/MCD.2005.1388765 10.1145/3232195.3232216 10.1109/NANO.2006.247647 10.1109/TVLSI.2018.2822278 10.1109/ICCT.2008.4716260 10.1109/TC.2009.21 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. |
DBID | AAYXX CITATION 3V. 7SC 7SP 7XB 88I 8AL 8AO 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L6V L7M L~C L~D M0N M2P M7S P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U S0W |
DOI | 10.1007/s00034-022-02014-6 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Electronics & Communications Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection (ProQuest) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Science Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection (ProQuest) ProQuest Central Basic DELNET Engineering & Technology Collection |
DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection ProQuest Computing Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest DELNET Engineering and Technology Collection Materials Science & Engineering Collection ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) |
DatabaseTitleList | Computer Science Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1531-5878 |
EndPage | 4997 |
ExternalDocumentID | 10_1007_s00034_022_02014_6 |
GroupedDBID | -5B -5G -BR -EM -Y2 -~C -~X .86 .VR 06D 0R~ 0VY 1N0 1SB 2.D 203 28- 29B 29~ 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 78A 88I 8AO 8FE 8FG 8FW 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHQN ABJCF ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCEE ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CSCUP DDRTE DL5 DNIVK DPUIP DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X J-C J0Z JBSCW JCJTX JZLTJ K6V K7- KDC KOV KOW L6V LAS LLZTM M0N M2P M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9P PF0 PQQKQ PROAC PT4 PT5 PTHSS Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZK S0W S16 S1Z S26 S27 S28 S3B SAP SCLPG SCV SDH SDM SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TN5 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7X Z7Z Z83 Z88 Z8M Z8N Z8R Z8T Z8W Z92 ZMTXR _50 ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT 7SC 7SP 7XB 8AL 8FD 8FK ABRTQ JQ2 L7M L~C L~D PKEHL PQEST PQGLB PQUKI PRINS Q9U |
ID | FETCH-LOGICAL-c249t-9d4082ee72e4a44c4b239677815fd426bd7f92c3e1736ce35c1fd33ae57856183 |
IEDL.DBID | BENPR |
ISSN | 0278-081X |
IngestDate | Sat Aug 16 15:53:05 EDT 2025 Thu Apr 24 22:58:15 EDT 2025 Tue Jul 01 00:50:52 EDT 2025 Fri Feb 21 02:44:57 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | Error-tolerant Approximate adder QCA Majority logic |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c249t-9d4082ee72e4a44c4b239677815fd426bd7f92c3e1736ce35c1fd33ae57856183 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-8401-8114 |
PQID | 2692860568 |
PQPubID | 30136 |
PageCount | 21 |
ParticipantIDs | proquest_journals_2692860568 crossref_primary_10_1007_s00034_022_02014_6 crossref_citationtrail_10_1007_s00034_022_02014_6 springer_journals_10_1007_s00034_022_02014_6 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220900 2022-09-00 20220901 |
PublicationDateYYYYMMDD | 2022-09-01 |
PublicationDate_xml | – month: 9 year: 2022 text: 20220900 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: Cambridge |
PublicationSubtitle | CSSP |
PublicationTitle | Circuits, systems, and signal processing |
PublicationTitleAbbrev | Circuits Syst Signal Process |
PublicationYear | 2022 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | RairighDLimits of CMOS Technology Scaling and Technologies Beyond-CMOS2005PiscatawayInstitute of Electrical and Electronics Inc. B. Aravinth, L.J.A. Marcilin, Implementation of coplanar approximate adders in QCA, in 2016 International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET), pp. 680–684 (2016) W.M. Holt: 1.1 Moore’s law: a path going forward, in IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, pp. 8–13 (2016). https://doi.org/10.1109/ISSCC.2016.7417888 PudiVSridharanKLow complexity design of ripple Carry and Brent-Kung adders in QCAIEEE Trans. Nanotechnol.201211110511910.1109/TNANO.2011.2158006 LentCSTougawPDPorodWBernsteinGHQuantum cellular automataNanotechnology19934495710.1088/0957-4484/4/1/004 M.C. Parameshwara, Approximate full adders for energy efficient image processing applications. J. Circuits Syst. Comput. 30(13) (early access) DallooANajafiAGarcia-OrtizASystematic design of an approximate adder: the optimized lower part constant-OR adderIEEE Trans. Very Large Scale Integr. (VLSI) Syst.20182681595159910.1109/TVLSI.2018.2822278 ChoHSwartzlanderEEAdder and multiplier design in quantum-dot cellular automataIEEE Trans. Comput.2009586721727267520110.1109/TC.2009.21 TougawPDLentCSLogical devices implemented using quantum cellular automataJ. Appl. Phys.19947531818182410.1063/1.356375 HegdeRShanbhagNRSoft digital signal processingIEEE Trans. Very Large Scale Integr. (VLSI) Syst.20019681382310.1109/92.974895 B. Sen, T. Adak, A.S. Anand, B.K. Sikdar, Synthesis of reversible universal QCA gate structure for energy efficient digital design, in TENCON 2011—2011 IEEE Region 10 Conference, Bali, 2011, pp. 806–810. https://doi.org/10.1109/TENCON.2011.6129222. ZareeiZNaviKKeshavarziyanPLow-power, high-speed 1-bit inexact full adder cell designs applicable to low-energy image processingInt. J. Electron.20181053375384 LentCSIsaksenBLiebermanMMolecular quantum-dot cellular automataJ. Am. Chem. Soc.200312541056106310.1021/ja026856g V. Vankamamidi, M. Ottavi, F. Lombardi, Clocking and cell placement for QCA, in Sixth IEEE Conference on Nanotechnology, 2006, pp. 343–346 (2006) R. Courtland, Transistors could stop shrinking in 2021: a key industry report forecasts an end to traditional scaling of transistors, IEEE Spectrum (2016). https://spectrum.ieee.org/semiconductors/devices/transistors-could-stop-shrinking-in-2021 SkotnickiTHutchbyJATsu-Jae KingH-PWongF. BoeufThe end of CMOS scaling: toward the introduction of new materials and structural changes to improve MOSFET performanceIEEE Circuits and Devices Magazine2005211162610.1109/MCD.2005.1388765 MahdianiHRAhmadiAFakhraieSMLucasCBio-inspired imprecise computational blocks for efficient VLSI implementation of soft-computing applicationsIEEE Trans. Circuits Syst. I Regul. Pap.2010574850862275668010.1109/TCSI.2009.2027626 W. Wang, K. Walus, G.A. Jullien, Quantum-dot cellular automata adders, in 2003 Third IEEE Conference on Nanotechnology, 2003. IEEE-NANO 2003., San Francisco, CA, USA, 2003, vol. 2, pp. 461–464 AraniIERezaiANovel circuit design of serial-parallel multiplier in quantum-dot cellular automata technologyJ. Comput. Electron.2018719 C. Labrado, H. Thapliyal, F. Lombardi, Design of majority logic based approximate arithmetic circuits, in IEEE International Symposium on Circuits and Systems (ISCAS), 2017, pp. 1–4 (2017) K. Walus, A. Vetteth, G. Jullien, V. Dimitrov, RAM design using quantum-dot cellular automata, in Tech Proceedings of Nanotechnology Conference and Trade Show2, 160–163 (2003) WalusKDysartTJJullienGABudimanRAQCADesigner: a rapid design and Simulation tool for quantum-dot cellular automataIEEE Trans. Nanotechnol.200431263110.1109/TNANO.2003.820815 Y. Xia, K. Qiu, Design and application of universal logic gate based on quantum-dot cellular automata, in 2008 11th IEEE International Conference on Communication Technology, Hangzhou, 2008, pp. 335–338. https://doi.org/10.1109/ICCT.2008.4716260 http://www.imageprocessingplace.com NASA: Bit-serial adder based on quantum dots, Washington, DC [Online]. Available http://www.nasatech.com/Briefs/Jan03/NPO20869.html R. Zhang, K. Walus, W. Wang, G.A. Jullien, Performance comparison of quantum-dot cellular automata adders, in 2005 IEEE International Symposium on Circuits and Systems, Kobe, 2005, vol. 3, pp. 2522–2526 T. Zhang, W. Liu, E. McLarnon, M. O’Neill, F. Lombardi, Design of majority logic (ML) based approximate full adders, in IEEE International Symposium on Circuits and Systems (ISCAS), 2018, pp. 1–5 (2018) H.A.F. Almurib, T.N. Kumar, F. Lombardi, Inexact designs for approximate low power addition by cell replacement, in Proceedings of IEEE International Conference on Design, Automation and Test in Europe Conference and Exhibition (DATE), Dresden, Germany, pp. 660–665 (2016) O. Liolis, V.A. Mardiris, G.C. Sirakoulis, I.G. Karafyllidis: Quantum-dot cellular automata RAM design using crossbar architecture, in IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH). Athens, 2018, pp. 1–5 (2018) International Road Map for Devices and Systems (IRDS): Beyond CMOS, 2020 Edition, available at https://irds.ieee.org/images/files/pdf/2020/2020IRDS_MM.pdf 2014_CR9 A Dalloo (2014_CR6) 2018; 26 IE Arani (2014_CR2) 2018; 7 2014_CR5 CS Lent (2014_CR12) 2003; 125 2014_CR8 2014_CR1 2014_CR3 K Walus (2014_CR26) 2004; 3 2014_CR14 2014_CR17 2014_CR16 2014_CR11 2014_CR10 V Pudi (2014_CR18) 2012; 11 2014_CR30 CS Lent (2014_CR13) 1993; 4 D Rairigh (2014_CR19) 2005 PD Tougaw (2014_CR22) 1994; 75 HR Mahdiani (2014_CR15) 2010; 57 T Skotnicki (2014_CR21) 2005; 21 2014_CR25 H Cho (2014_CR4) 2009; 58 2014_CR28 2014_CR27 2014_CR24 2014_CR23 2014_CR20 Z Zareei (2014_CR29) 2018; 105 R Hegde (2014_CR7) 2001; 9 |
References_xml | – reference: V. Vankamamidi, M. Ottavi, F. Lombardi, Clocking and cell placement for QCA, in Sixth IEEE Conference on Nanotechnology, 2006, pp. 343–346 (2006) – reference: M.C. Parameshwara, Approximate full adders for energy efficient image processing applications. J. Circuits Syst. Comput. 30(13) (early access) – reference: TougawPDLentCSLogical devices implemented using quantum cellular automataJ. Appl. Phys.19947531818182410.1063/1.356375 – reference: ChoHSwartzlanderEEAdder and multiplier design in quantum-dot cellular automataIEEE Trans. Comput.2009586721727267520110.1109/TC.2009.21 – reference: PudiVSridharanKLow complexity design of ripple Carry and Brent-Kung adders in QCAIEEE Trans. Nanotechnol.201211110511910.1109/TNANO.2011.2158006 – reference: WalusKDysartTJJullienGABudimanRAQCADesigner: a rapid design and Simulation tool for quantum-dot cellular automataIEEE Trans. Nanotechnol.200431263110.1109/TNANO.2003.820815 – reference: K. Walus, A. Vetteth, G. Jullien, V. Dimitrov, RAM design using quantum-dot cellular automata, in Tech Proceedings of Nanotechnology Conference and Trade Show2, 160–163 (2003) – reference: International Road Map for Devices and Systems (IRDS): Beyond CMOS, 2020 Edition, available at https://irds.ieee.org/images/files/pdf/2020/2020IRDS_MM.pdf – reference: R. Courtland, Transistors could stop shrinking in 2021: a key industry report forecasts an end to traditional scaling of transistors, IEEE Spectrum (2016). https://spectrum.ieee.org/semiconductors/devices/transistors-could-stop-shrinking-in-2021 – reference: HegdeRShanbhagNRSoft digital signal processingIEEE Trans. Very Large Scale Integr. (VLSI) Syst.20019681382310.1109/92.974895 – reference: http://www.imageprocessingplace.com – reference: SkotnickiTHutchbyJATsu-Jae KingH-PWongF. BoeufThe end of CMOS scaling: toward the introduction of new materials and structural changes to improve MOSFET performanceIEEE Circuits and Devices Magazine2005211162610.1109/MCD.2005.1388765 – reference: H.A.F. Almurib, T.N. Kumar, F. Lombardi, Inexact designs for approximate low power addition by cell replacement, in Proceedings of IEEE International Conference on Design, Automation and Test in Europe Conference and Exhibition (DATE), Dresden, Germany, pp. 660–665 (2016) – reference: W.M. Holt: 1.1 Moore’s law: a path going forward, in IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, pp. 8–13 (2016). https://doi.org/10.1109/ISSCC.2016.7417888 – reference: LentCSTougawPDPorodWBernsteinGHQuantum cellular automataNanotechnology19934495710.1088/0957-4484/4/1/004 – reference: O. Liolis, V.A. Mardiris, G.C. Sirakoulis, I.G. Karafyllidis: Quantum-dot cellular automata RAM design using crossbar architecture, in IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH). Athens, 2018, pp. 1–5 (2018) – reference: DallooANajafiAGarcia-OrtizASystematic design of an approximate adder: the optimized lower part constant-OR adderIEEE Trans. Very Large Scale Integr. (VLSI) Syst.20182681595159910.1109/TVLSI.2018.2822278 – reference: C. Labrado, H. Thapliyal, F. Lombardi, Design of majority logic based approximate arithmetic circuits, in IEEE International Symposium on Circuits and Systems (ISCAS), 2017, pp. 1–4 (2017) – reference: MahdianiHRAhmadiAFakhraieSMLucasCBio-inspired imprecise computational blocks for efficient VLSI implementation of soft-computing applicationsIEEE Trans. Circuits Syst. I Regul. Pap.2010574850862275668010.1109/TCSI.2009.2027626 – reference: RairighDLimits of CMOS Technology Scaling and Technologies Beyond-CMOS2005PiscatawayInstitute of Electrical and Electronics Inc. – reference: LentCSIsaksenBLiebermanMMolecular quantum-dot cellular automataJ. Am. Chem. Soc.200312541056106310.1021/ja026856g – reference: R. Zhang, K. Walus, W. Wang, G.A. Jullien, Performance comparison of quantum-dot cellular automata adders, in 2005 IEEE International Symposium on Circuits and Systems, Kobe, 2005, vol. 3, pp. 2522–2526 – reference: B. Aravinth, L.J.A. Marcilin, Implementation of coplanar approximate adders in QCA, in 2016 International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET), pp. 680–684 (2016) – reference: Y. Xia, K. Qiu, Design and application of universal logic gate based on quantum-dot cellular automata, in 2008 11th IEEE International Conference on Communication Technology, Hangzhou, 2008, pp. 335–338. https://doi.org/10.1109/ICCT.2008.4716260 – reference: ZareeiZNaviKKeshavarziyanPLow-power, high-speed 1-bit inexact full adder cell designs applicable to low-energy image processingInt. J. Electron.20181053375384 – reference: T. Zhang, W. Liu, E. McLarnon, M. O’Neill, F. Lombardi, Design of majority logic (ML) based approximate full adders, in IEEE International Symposium on Circuits and Systems (ISCAS), 2018, pp. 1–5 (2018) – reference: B. Sen, T. Adak, A.S. Anand, B.K. Sikdar, Synthesis of reversible universal QCA gate structure for energy efficient digital design, in TENCON 2011—2011 IEEE Region 10 Conference, Bali, 2011, pp. 806–810. https://doi.org/10.1109/TENCON.2011.6129222. – reference: W. Wang, K. Walus, G.A. Jullien, Quantum-dot cellular automata adders, in 2003 Third IEEE Conference on Nanotechnology, 2003. IEEE-NANO 2003., San Francisco, CA, USA, 2003, vol. 2, pp. 461–464 – reference: AraniIERezaiANovel circuit design of serial-parallel multiplier in quantum-dot cellular automata technologyJ. Comput. Electron.2018719 – reference: NASA: Bit-serial adder based on quantum dots, Washington, DC [Online]. Available http://www.nasatech.com/Briefs/Jan03/NPO20869.html – ident: 2014_CR3 doi: 10.1109/WiSPNET.2016.7566219 – volume: 4 start-page: 49 year: 1993 ident: 2014_CR13 publication-title: Nanotechnology doi: 10.1088/0957-4484/4/1/004 – volume: 11 start-page: 105 issue: 1 year: 2012 ident: 2014_CR18 publication-title: IEEE Trans. Nanotechnol. doi: 10.1109/TNANO.2011.2158006 – ident: 2014_CR20 doi: 10.1109/TENCON.2011.6129222. – volume-title: Limits of CMOS Technology Scaling and Technologies Beyond-CMOS year: 2005 ident: 2014_CR19 – volume: 3 start-page: 26 issue: 1 year: 2004 ident: 2014_CR26 publication-title: IEEE Trans. Nanotechnol. doi: 10.1109/TNANO.2003.820815 – ident: 2014_CR30 doi: 10.1109/ISCAS.2018.8350962 – ident: 2014_CR11 doi: 10.1109/ISCAS.2017.8050819 – ident: 2014_CR25 doi: 10.1109/NANO.2003.1231818 – ident: 2014_CR9 – volume: 7 start-page: 1 year: 2018 ident: 2014_CR2 publication-title: J. Comput. Electron. – ident: 2014_CR16 – ident: 2014_CR10 – ident: 2014_CR17 doi: 10.1142/S0218126621502352 – volume: 105 start-page: 375 issue: 3 year: 2018 ident: 2014_CR29 publication-title: Int. J. Electron. – ident: 2014_CR24 – ident: 2014_CR28 – ident: 2014_CR8 doi: 10.1109/ISSCC.2016.7417888 – ident: 2014_CR1 doi: 10.3850/9783981537079_0042 – ident: 2014_CR5 doi: 10.1109/MSPEC.2016.7551335 – volume: 9 start-page: 813 issue: 6 year: 2001 ident: 2014_CR7 publication-title: IEEE Trans. Very Large Scale Integr. (VLSI) Syst. doi: 10.1109/92.974895 – volume: 125 start-page: 1056 issue: 4 year: 2003 ident: 2014_CR12 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja026856g – volume: 57 start-page: 850 issue: 4 year: 2010 ident: 2014_CR15 publication-title: IEEE Trans. Circuits Syst. I Regul. Pap. doi: 10.1109/TCSI.2009.2027626 – volume: 75 start-page: 1818 issue: 3 year: 1994 ident: 2014_CR22 publication-title: J. Appl. Phys. doi: 10.1063/1.356375 – volume: 21 start-page: 16 issue: 1 year: 2005 ident: 2014_CR21 publication-title: IEEE Circuits and Devices Magazine doi: 10.1109/MCD.2005.1388765 – ident: 2014_CR14 doi: 10.1145/3232195.3232216 – ident: 2014_CR23 doi: 10.1109/NANO.2006.247647 – volume: 26 start-page: 1595 issue: 8 year: 2018 ident: 2014_CR6 publication-title: IEEE Trans. Very Large Scale Integr. (VLSI) Syst. doi: 10.1109/TVLSI.2018.2822278 – ident: 2014_CR27 doi: 10.1109/ICCT.2008.4716260 – volume: 58 start-page: 721 issue: 6 year: 2009 ident: 2014_CR4 publication-title: IEEE Trans. Comput. doi: 10.1109/TC.2009.21 |
SSID | ssj0019492 |
Score | 2.3193169 |
Snippet | This paper presents two new inexact sum-based 1-bit approximate full adders (AFAs). The proposed 1-bit approximate adders (PAAs), namely PAA1 and PAA2, are... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 4977 |
SubjectTerms | Adding circuits Cellular automata Circuits and Systems Delay Design Electrical Engineering Electronics and Microelectronics Engineering Image processing Image quality Instrumentation Signal,Image and Speech Processing |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagLDAgnqJQkAc2sNQktmuPAVpVSGVAVOoWxY9IRVWKkiLg33N2k7QgQGL2xcP58X2XO3-H0CWTSsNOskRqCFFoGBgilTSE8yztylQIplxGd_TAh2N6P2GT6lFYWVe71ylJf1M3j928lgpx1edAcQJK-CbaYhC7u0KucRg3uQNJfStkl1IjAHiT6qnMz3N8haMVx_yWFvVoM9hDuxVNxPFyXffRhs0P0M6aeOAhmsY5jNuU9L0KBIAHHqXPc9eMDrsOyprcAEIZHDvV8PcpMFOLY6cXUmL38xVs3vCdnaUfGHgr7hfFvCCPtpzO_FTxWmL7CI0H_afbIakaJxAN0dSCSOPaSFvbCy1NKdVUhZF0SnEBywxAsjK9TIY6skEv4tpGTAeZiaLUOuUbDof8GLXyeW5PELYsNaIrBTWKUYByKYQCUsIizjJmItpGQe2_RFeq4q65xSxp9JC9zxPweeJ9nvA2umq-eVlqavxp3amXJanOV5mEXIYCIjEu2ui6XqrV8O-znf7P_Axth363uKKyDmotild7DixkoS78pvsEiajQFQ priority: 102 providerName: Springer Nature |
Title | An Area-Efficient Majority Logic-Based Approximate Adders with Low Delay for Error-Resilient Applications |
URI | https://link.springer.com/article/10.1007/s00034-022-02014-6 https://www.proquest.com/docview/2692860568 |
Volume | 41 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NTzMhEJ5oe9GD8TPWj4aDNyW6u0DhZFbdajQaY2xST5tdYJO-aVrftkb99w5IWzXR68JyGAbmgRmeB-CAq1KjJ1mqNB5RWBwZqkplqBBVcaIKKXnpMrq3d-Kqw667vBsu3MahrHK6J_qN2gy1uyM_joWKJWJvIU-f_1OnGuWyq0FCYxHquAVLWYP6WXZ3_zDLIyjmZZFdeo1i8OuGZzP-8ZznZqGumh0hU8So-B6a5njzR4rUR572KqwEyEjSzzlegwU7WIflL0SCG9BLB9huC5p5RggMJOS2-Dd0wnTEqSlreobRypDUMYi_9RClWpI67pAxcRex2OeVXNh-8U4Qw5JsNBqO6IMd9_p-qPRLknsTOu3s8fyKBhEFqvFkNaHKOElpa1uxZQVjmpVxohxrXMQrg-G5NK1KxTqxUSsR2iZcR5VJksI6FhyBC34LaoPhwG4Dsbww8kRJZkrOMKwrKUsEKDwRvOImYQ2IpvbLdWAYd0IX_XzGjextnqPNc2_zXDTgcPbP8ye_xp-996bTkoe1Ns7nntGAo-lUzZt_H23n79F2YSn23uEKyvagNhm92H1EIJOyCYuyfdmEenr5dJM1g9Ph106cfgB_-tgx |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NTxsxEB1ROLQ9VP1UQ2nrQzlRq6y_sj6galuShkI4VCDltt21vVKqKKFJEOVP9Tcy4-wmgAQ3zuudw3jsefZ43gP4pG3pMJICtw6PKEokntvSem5MVezaIk11SRXd_rHpnaqfAz1Yg_9NLww9q2z2xLhR-4mjO_IvwliRIvY26dezv5xUo6i62khoLMLiMFxe4JFttnewj_O7LUS3c_K9x2tVAe7wqDHn1pPGcghtEVShlFOlkJZo1BJdecxXpW9XVjgZkrY0LkjtkspLWQSihTG4AtDuI9hQEjM5daZ3fyyrFlZFEWYq5nFMtYO6SSe26kUmGE5v5xGgJYqbm4lwhW5vFWRjnus-h2c1QGXZIqJewFoYv4Sn12gLX8EwG-P3UPBO5J_AtMX6xZ8JyeAx0m52_BvmRs8y4iv_N0RMHFhGTCUzRte-OOaC7YdRcckQMbPOdDqZ8l9hNhxFU9m1kvprOH0Q576B9fFkHN4CC7rw6a5NlS-1QhBh07REOKSl0ZX2UrUgafyXu5rPnGQ1RvmSiTn6PEef59HnuWnBzvKfswWbx72jt5ppyeuVPctXcdiCz81UrT7fbW3zfmsf4XHvpH-UHx0cH76DJyJGCj1l24L1-fQ8vEfsMy8_xIBj8PuhI_wKi_4PNQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3BThsxEB3RIFXtoSqlFWkp-FBO1IL12s76UKGFJIICEUJFym27a3ulVFFCk1SUX-vXMePsJoBUbpzXO4fxs-eNx34D8EWZwiKSPDcWUxQpIsdNYRzXusz3TZ4kqqCK7nlPH1_J733VX4F_9VsYulZZ74lho3ZjS2fke0IbkSD31sleWV2LuGh3D65_c-ogRZXWup3GHCKn_vYG07fpt5M2zvWOEN3Oj6NjXnUY4BbTjhk3jvote98SXuZSWlmI2JCkWqRKh7GrcK3SCBv7qBVr62Nlo9LFce5JIkbjakC7L2C1RVlRA1YPO72Ly0UNw8jQkplKexwDb796shMe7gVdGE436ZGuRZLrh2FxyXUflWdD1Ou-hTcVXWXpHF9rsOJH7-D1PRHDdRikI_zuc94JahQYxNh5_mtMTfEYdXK2_BAjpWMpqZf_HSBD9iwl3ZIpo0NgHHPD2n6Y3zLkz6wzmYwn_NJPB8NgKr1XYH8PV8_i3g_QGI1HfgOYV7lL9k0iXaEkUgqTJAWSIxVrVSoXyyZEtf8yW6mbU5ONYbbQZQ4-z9DnWfB5ppuwu_jneq7t8eTozXpasmqdT7MlKpvwtZ6q5ef_W_v4tLVteInozs5Oeqef4JUIQKF7bZvQmE3--M9IhGbFVoU4Bj-fG-R3AQoUxw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Area-Efficient+Majority+Logic-Based+Approximate+Adders+with+Low+Delay+for+Error-Resilient+Applications&rft.jtitle=Circuits%2C+systems%2C+and+signal+processing&rft.au=Parameshwara%2C+M.+C&rft.au=Maroof%2C+Naeem&rft.date=2022-09-01&rft.pub=Springer+Nature+B.V&rft.issn=0278-081X&rft.eissn=1531-5878&rft.volume=41&rft.issue=9&rft.spage=4977&rft.epage=4997&rft_id=info:doi/10.1007%2Fs00034-022-02014-6&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-081X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-081X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-081X&client=summon |