Simple algebraic groups with the same maximal tori, weakly commensurable Zariski-dense subgroups, and good reduction

We provide a new condition for an absolutely almost simple algebraic group to have good reduction with respect to a discrete valuation of the base field which is formulated in terms of the existence of maximal tori with special properties. This characterization, in particular, shows that the Finiten...

Full description

Saved in:
Bibliographic Details
Published inAdvances in mathematics (New York. 1965) Vol. 438; p. 109437
Main Authors Chernousov, Vladimir I., Rapinchuk, Andrei S., Rapinchuk, Igor A.
Format Journal Article
LanguageEnglish
Published Elsevier Inc 01.02.2024
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We provide a new condition for an absolutely almost simple algebraic group to have good reduction with respect to a discrete valuation of the base field which is formulated in terms of the existence of maximal tori with special properties. This characterization, in particular, shows that the Finiteness Conjecture for forms of an absolutely almost simple algebraic group over a finitely generated field that have good reduction at a divisorial set of places of the field (cf. [66]) would imply the finiteness of the genus of the group at hand. It also leads to a new phenomenon that we refer to as “killing the genus by a purely transcendental extension.” Yet another application deals with the investigation of “eigenvalue rigidity” of Zariski-dense subgroups (cf. [64]), which in turn is related to the analysis of length-commensurable Riemann surfaces and general locally symmetric spaces. Finally, we analyze the Finiteness Conjecture and the genus problem for simple algebraic groups of type F4.
ISSN:0001-8708
1090-2082
DOI:10.1016/j.aim.2023.109437