Swelling and diffusion behaviour of spherical morphological polymeric hydrogel membranes (SMPHMs) containing epoxy groups and their application as drug release systems

The aim of the study is to characterize synthesized spherical morphological polymeric hydrogel membranes (SMPHMs), especially their swelling properties, and to show the usability of these SMPHMs in the biomedical applications such as drug delivery systems. Insulin used in the treatment of diabetes m...

Full description

Saved in:
Bibliographic Details
Published inPolymer bulletin (Berlin, Germany) Vol. 80; no. 6; pp. 6567 - 6590
Main Authors Feyzioğlu-Demir, Esra, Üzüm, Ömer Barış, Akgöl, Sinan
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.06.2023
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The aim of the study is to characterize synthesized spherical morphological polymeric hydrogel membranes (SMPHMs), especially their swelling properties, and to show the usability of these SMPHMs in the biomedical applications such as drug delivery systems. Insulin used in the treatment of diabetes mellitus disease was chosen as a model drug to demonstrate the usability of these SMPHMs as a drug delivery system. For this purpose, poly(hydroxyethyl methacrylate-co-glycidyl methacrylate) [P(HEMA-GMA)] SMPHMs were prepared by photopolymerization technique using different monomers mole ratios. Characterization of SMPHMs was carried out with SEM and FTIR analyses. Swelling experiments were conducted in water. Equilibrium percentage swelling values of SMPHMs were calculated and found as in the range of 40–122%, depending on hydrophilic structure of SMPHMs. Swelling kinetic parameters were determined, and the diffusion behaviour of water was also investigated. Water diffusion into the SMPHMs was found to shift from non-Fickian diffusion to Fickian diffusion when HEMA/GMA mole ratio was decreased in the structure of SMPHMs. In the final part of study, insulin release conditions from SMPHMs were optimized. For this purpose, insulin release studies were carried out to investigate the effect of monomer ratios, pH, temperature, and initial insulin concentration. The amount of maximum cumulative insulin release was found as 3747.73 µg/g in pH 7.4, at 25 °C, in the 0.5 mg/mL insulin concentration from SMPHMs-3 in seven hours. According to these obtained results, these SMPHMs can be used as alternative systems for biotechnological applications such as swelling-controlled drug delivery systems.
ISSN:0170-0839
1436-2449
DOI:10.1007/s00289-022-04368-y