Adaptive Distributed Impulsive Synchronization Control for Multi-Agent Systems Under Switching Deception Attacks on Dual Channels

The paper explores the mean-square bounded synchronization problem of leader-following multi-agent systems (LF-MASs) with the directed network under dual-channel stochastic switching deception attacks. Compared with previous studies, a new dual-channel deception attack mode is considered. In this ne...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on network science and engineering Vol. 12; no. 4; pp. 2797 - 2809
Main Authors He, Jiangyan, Guo, Xing, Chen, Zili, Ren, Jianlong
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.07.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The paper explores the mean-square bounded synchronization problem of leader-following multi-agent systems (LF-MASs) with the directed network under dual-channel stochastic switching deception attacks. Compared with previous studies, a new dual-channel deception attack mode is considered. In this new attack mode: 1) the deception attacks suffered by the sensor-controller channel are edge-based. 2) the sensor-controller channel and the controller-actuator channel are subjected to stochastic switching deception attacks by different deception signals at different impulse moments, and the stochastic switching manner on each channel obeys the Bernoulli distribution. To tackle this challenging problem, a novel adaptive and switching secure impulsive synchronization control protocol is proposed. In this new protocol, the agents receive false signals from their neighbors due to edge-based deception attacks on the sensor-controller channel. Further, some criteria have been obtained under the designed novel control protocol by applying linear matrix inequality technique, matrix analytic theory and Lyapunov stability theory. Finally, two examples are given to verify the obtained results.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2327-4697
2334-329X
DOI:10.1109/TNSE.2025.3554169