Discovery and optimization of a novel CNS penetrant series of mGlu4 PAMs based on a 1,4-thiazepane core with in vivo efficacy in a preclinical Parkinsonian model
[Display omitted] A high throughput screen (HTS) identified a novel, but weak (EC50 = 6.2 μM, 97% Glu Max) mGlu4 PAM chemotype based on a 1,4-thiazepane core, VU0544412. Reaction development and chemical optimization delivered a potent mGlu4 PAM VU6022296 (EC50 = 32.8 nM, 108% Glu Max) with good CNS...
Saved in:
Published in | Bioorganic & medicinal chemistry letters Vol. 37; p. 127838 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.04.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | [Display omitted]
A high throughput screen (HTS) identified a novel, but weak (EC50 = 6.2 μM, 97% Glu Max) mGlu4 PAM chemotype based on a 1,4-thiazepane core, VU0544412. Reaction development and chemical optimization delivered a potent mGlu4 PAM VU6022296 (EC50 = 32.8 nM, 108% Glu Max) with good CNS penetration (Kp = 0.45, Kp,uu = 0.70) and enantiopreference. Finally, VU6022296 displayed robust, dose-dependent efficacy in reversing Haloperidol-Induced Catalepsy (HIC), a rodent preclinical Parkinson’s disease model. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0960-894X 1464-3405 |
DOI: | 10.1016/j.bmcl.2021.127838 |