Chromosomal investigations of the Usubuchi sarcoma. II. Chromosomal alteration of the stem line cells revealed by differential staining techniques

Stem line cells of the Usubuchi sarcoma (US) were karyologically investigated by means of G-, C-, and N-banding methods in ten samples from the 1,923rd to 2,081st transfer generations, with special attention to the structural alteration of marker-1 chromosome. The US cells showed wide variations in...

Full description

Saved in:
Bibliographic Details
Published inCancer genetics and cytogenetics Vol. 7; no. 3; pp. 245 - 255
Main Authors Obara, Y, Sasaki, M, Shibasaki, Y, Okubo, M
Format Journal Article
LanguageEnglish
Published United States 01.11.1982
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Stem line cells of the Usubuchi sarcoma (US) were karyologically investigated by means of G-, C-, and N-banding methods in ten samples from the 1,923rd to 2,081st transfer generations, with special attention to the structural alteration of marker-1 chromosome. The US cells showed wide variations in chromosome constitution and number, while the modal number of chromosomes was consistently 64 in all the generations examined. The chromosome constitutions varied widely even in cells with the modal number. In the early stage (1,923rd to 1,936th generations) the US contained two major stem lines characterized by marker combinations such as 1-2-3-4(1)-4(3)-8 and 2-3-4(1)-4(2)-4(3)-8, occurring with nearly similar frequency. From the middle to later transfer stages (from the 2,004th to the 2,081st generations), the 1-2-3-4(1)-4(3)-8 stem line rapidly declined and finally disappeared. In contrast, the 2-3-4(1)-4(2)-4(3)-8 line became a predominant part of the stem line. The G- and C-banding and population analyses of the stem line cells strongly suggested that marker 4(2) might have been derived from marker 1 by a deletion of the distal half of its long arm. The US studied contained a few stem lines and various types of sublines, each karyologically characteristic. G-Banding analysis revealed various types of intra- and interchromosomal rearrangements probably due to occasional chromosomal mutations either in markers or in nonmarkers in both stem lines and sublines. It seems likely that the stem line cells of the US are not always stable, but rather variable, in their chromosome makeup during the course of multiplication and successive transfers.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0165-4608
DOI:10.1016/0165-4608(82)90072-3