Influence of scattered radiation and tube potential on radiographic contrast: comparison of two different dental X-ray films

The fundamental concept in image quality of contrast has been analysed in terms of its elements; film, radiation and object contrast, and the theoretical formula to describe their interrelationship have been evaluated. Experiments were designed to investigate the dependence of radiographic contrast...

Full description

Saved in:
Bibliographic Details
Published inDento-maxillo-facial radiology Vol. 20; no. 3; pp. 135 - 146
Main Authors Helmrot, E, Carlsson, G A, Eckerdal, O, Sandborg, M
Format Journal Article
LanguageEnglish
Published England 01.08.1991
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The fundamental concept in image quality of contrast has been analysed in terms of its elements; film, radiation and object contrast, and the theoretical formula to describe their interrelationship have been evaluated. Experiments were designed to investigate the dependence of radiographic contrast on the kV, the type of generator and dental film used (D and E speed). An ivory wedge was used as the object, both alone and within a polymethyl methacrylate phantom as scattering medium. Precise definition and control of the X-ray generators were achieved by means of measurements of the primary X-ray spectra using a Compton spectrometer. D speed was found to have higher film contrast than E speed when compared at the same optical density, due to its lower base and fog and lower level of saturation in these experiments. On the other hand, E speed was found to have wider latitude. The experimental object was reproduced with the highest radiographic contrast using D-speed film and, with a given type of generator, this increased when the kV was decreased. While no difference in scatter/primary ratios was observed using the two different films, a weak dependence on kV in the range from 36 to 77 kV was found and confirmed by Monte Carlo calculations. The results indicate that the D and E speed films used had equal energy absorption properties; the difference in radiographic performance is due to their different film characteristics. The importance of controlling the physical parameters (photon energy spectrum, base and fog and optical density level) when comparing image qualities is clearly demonstrated.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0250-832X
1476-542X
1476-542X
DOI:10.1259/dmfr.20.3.1807997