Noncontact Size Estimation of Pressure Ulcers Using IR Thermal Imaging

Pressure injuries cause discomfort and potential fatality, underscoring the importance of wound assessment. In the post-COVID era, remote monitoring of wounds, particularly through noncontact methods like infrared (IR) thermal imaging and deep learning, is imperative. This letter proposes a deep lea...

Full description

Saved in:
Bibliographic Details
Published inIEEE sensors letters Vol. 8; no. 12; pp. 1 - 4
Main Authors Pandey, Bhaskar, Arora, Ajat Shatru, Joshi, Deepak
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.12.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Pressure injuries cause discomfort and potential fatality, underscoring the importance of wound assessment. In the post-COVID era, remote monitoring of wounds, particularly through noncontact methods like infrared (IR) thermal imaging and deep learning, is imperative. This letter proposes a deep learning approach for dimension detection from thermal images, trained on data from 18 subjects. Instance segmentation achieved a maximum accuracy of 0.9542, with classification accuracy reaching 0.9922. The model exhibited a root mean square error (RMSE) of 0.1609 cm for measured dimensions, with superior accuracy in detecting wound length (RMSE: 0.1114 cm) compared to width (RMSE: 0.1506 cm).
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2475-1472
2475-1472
DOI:10.1109/LSENS.2024.3494843