Effective Reduction of Current Collapse in AlGaN/GaN MISHEMT via Low-Temperature Nitriding Treatment

We successfully demonstrated a 72% reduction in current collapse under high-field driving conditions (<inline-formula> <tex-math notation="LaTeX">{V}_{\text {D}} =300 </tex-math></inline-formula> V) for AlGaN/GaN MISHEMT using low-temperature supercritical fluid nit...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on electron devices Vol. 72; no. 4; pp. 2090 - 2094
Main Authors Chou, Sheng-Yao, Chen, Yan-Chieh, Lin, Cheng-Hsien, Chen, Yan-Lin, Wu, Shuo-Bin, Chen, Hsin-Chu, Chang, Ting-Chang
Format Journal Article
LanguageEnglish
Published New York IEEE 01.04.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We successfully demonstrated a 72% reduction in current collapse under high-field driving conditions (<inline-formula> <tex-math notation="LaTeX">{V}_{\text {D}} =300 </tex-math></inline-formula> V) for AlGaN/GaN MISHEMT using low-temperature supercritical fluid nitridation (SCFN) treatment at <inline-formula> <tex-math notation="LaTeX">180~^{\circ } </tex-math></inline-formula>C for 1 h. A significant improvement in the off-state (<inline-formula> <tex-math notation="LaTeX">{V}_{\text {G}}= -10 </tex-math></inline-formula> V) gate leakage current was observed in MISHEMT with SCFN treatment, resulting in a high breakdown voltage (BV) capability of up to <inline-formula> <tex-math notation="LaTeX">{V}_{\text {D}}=710 </tex-math></inline-formula> V (at <inline-formula> <tex-math notation="LaTeX">1~\mu </tex-math></inline-formula>A/mm), compared to only <inline-formula> <tex-math notation="LaTeX">{V}_{\text {D}}=110 </tex-math></inline-formula> V without SCFN. Furthermore, in terms of characteristics, the device was improved with a 4.6% increase in maximum drain current (<inline-formula> <tex-math notation="LaTeX">{I}_{\text {D},\max } </tex-math></inline-formula>), a 2.9% increase in maximum transconductance (<inline-formula> <tex-math notation="LaTeX">{G}_{\text {m},\max } </tex-math></inline-formula>), and an 11.1% decrease in drain-source on resistance [<inline-formula> <tex-math notation="LaTeX">{R}_{\text {DS}} </tex-math></inline-formula>(on)]. These improvements can be attributed to the repairs of dangling bonds on the AlGaN surface and the elimination of the Al2O3/AlGaN interface traps, which collectively lead to improved performance and stability. Based on the abovementioned results, the X-ray photoelectron spectroscopy (XPS), conduction band edge of defect state density (<inline-formula> <tex-math notation="LaTeX">{D}_{\text {it}} </tex-math></inline-formula>), and gate leakage trap-related hopping conduction mechanism were analyzed to explain the phenomenon.
AbstractList We successfully demonstrated a 72% reduction in current collapse under high-field driving conditions ([Formula Omitted] V) for AlGaN/GaN MISHEMT using low-temperature supercritical fluid nitridation (SCFN) treatment at [Formula Omitted]C for 1 h. A significant improvement in the off-state ([Formula Omitted] V) gate leakage current was observed in MISHEMT with SCFN treatment, resulting in a high breakdown voltage (BV) capability of up to [Formula Omitted] V (at [Formula Omitted]A/mm), compared to only [Formula Omitted] V without SCFN. Furthermore, in terms of characteristics, the device was improved with a 4.6% increase in maximum drain current ([Formula Omitted]), a 2.9% increase in maximum transconductance ([Formula Omitted]), and an 11.1% decrease in drain-source on resistance [[Formula Omitted](on)]. These improvements can be attributed to the repairs of dangling bonds on the AlGaN surface and the elimination of the Al2O3/AlGaN interface traps, which collectively lead to improved performance and stability. Based on the abovementioned results, the X-ray photoelectron spectroscopy (XPS), conduction band edge of defect state density ([Formula Omitted]), and gate leakage trap-related hopping conduction mechanism were analyzed to explain the phenomenon.
We successfully demonstrated a 72% reduction in current collapse under high-field driving conditions (<inline-formula> <tex-math notation="LaTeX">{V}_{\text {D}} =300 </tex-math></inline-formula> V) for AlGaN/GaN MISHEMT using low-temperature supercritical fluid nitridation (SCFN) treatment at <inline-formula> <tex-math notation="LaTeX">180~^{\circ } </tex-math></inline-formula>C for 1 h. A significant improvement in the off-state (<inline-formula> <tex-math notation="LaTeX">{V}_{\text {G}}= -10 </tex-math></inline-formula> V) gate leakage current was observed in MISHEMT with SCFN treatment, resulting in a high breakdown voltage (BV) capability of up to <inline-formula> <tex-math notation="LaTeX">{V}_{\text {D}}=710 </tex-math></inline-formula> V (at <inline-formula> <tex-math notation="LaTeX">1~\mu </tex-math></inline-formula>A/mm), compared to only <inline-formula> <tex-math notation="LaTeX">{V}_{\text {D}}=110 </tex-math></inline-formula> V without SCFN. Furthermore, in terms of characteristics, the device was improved with a 4.6% increase in maximum drain current (<inline-formula> <tex-math notation="LaTeX">{I}_{\text {D},\max } </tex-math></inline-formula>), a 2.9% increase in maximum transconductance (<inline-formula> <tex-math notation="LaTeX">{G}_{\text {m},\max } </tex-math></inline-formula>), and an 11.1% decrease in drain-source on resistance [<inline-formula> <tex-math notation="LaTeX">{R}_{\text {DS}} </tex-math></inline-formula>(on)]. These improvements can be attributed to the repairs of dangling bonds on the AlGaN surface and the elimination of the Al2O3/AlGaN interface traps, which collectively lead to improved performance and stability. Based on the abovementioned results, the X-ray photoelectron spectroscopy (XPS), conduction band edge of defect state density (<inline-formula> <tex-math notation="LaTeX">{D}_{\text {it}} </tex-math></inline-formula>), and gate leakage trap-related hopping conduction mechanism were analyzed to explain the phenomenon.
Author Chen, Yan-Chieh
Lin, Cheng-Hsien
Chen, Yan-Lin
Chen, Hsin-Chu
Chang, Ting-Chang
Chou, Sheng-Yao
Wu, Shuo-Bin
Author_xml – sequence: 1
  givenname: Sheng-Yao
  surname: Chou
  fullname: Chou, Sheng-Yao
  organization: Department of Materials and Optoelectronic Science, National Sun Yat-sen University, Kaohsiung, Taiwan
– sequence: 2
  givenname: Yan-Chieh
  surname: Chen
  fullname: Chen, Yan-Chieh
  organization: Institute of Advanced Semiconductor Packaging and Testing, National Sun Yat-sen University, Kaohsiung, Taiwan
– sequence: 3
  givenname: Cheng-Hsien
  surname: Lin
  fullname: Lin, Cheng-Hsien
  organization: Department of Physics, National Sun Yat-Sen University, Kaohsiung, Taiwan
– sequence: 4
  givenname: Yan-Lin
  surname: Chen
  fullname: Chen, Yan-Lin
  organization: Master Program in Semiconductor and Green Technology, National Chung Hsing University, Taichung, Taiwan
– sequence: 5
  givenname: Shuo-Bin
  surname: Wu
  fullname: Wu, Shuo-Bin
  organization: Institute of Advanced Semiconductor Packaging and Testing, National Sun Yat-sen University, Kaohsiung, Taiwan
– sequence: 6
  givenname: Hsin-Chu
  orcidid: 0009-0003-4698-4842
  surname: Chen
  fullname: Chen, Hsin-Chu
  email: chenhc@mail.nsysu.edu.tw
  organization: Institute of Advanced Semiconductor Packaging and Testing and the Institute of Innovative Semiconductor Manufacturing, National Sun Yat-sen University, Kaohsiung, Taiwan
– sequence: 7
  givenname: Ting-Chang
  orcidid: 0000-0002-5301-6693
  surname: Chang
  fullname: Chang, Ting-Chang
  organization: Department of Physics, College of Semiconductor and Advanced Technology Research, National Sun Yatsen University, Kaohsiung, Taiwan
BookMark eNpNkM9rwjAUx8NwMHW777BDYOdq0qRpc5SuU0EdbN05xOZlVGrbpa1j__0ietjh8d6D7w_4TNCobmpA6JGSGaVEzvPsZRaSMJqxiIeEkhs0plEUB1JwMUJjQmgSSJawOzTpuoN_BefhGJnMWij68gT4Hczgr6bGjcXp4BzUPU6bqtJtB7is8aJa6t3cD96uP1bZNsenUuNN8xPkcGzB6X5wgHdl70pT1l84d6D7o0-5R7dWVx08XPcUfb5meboKNm_LdbrYBEXI4z4AkRiwkUmSWFpG4r1g1CRAecF1bEIg0hrBraFMUGGYBLmnEBoeJ2QvC2vYFD1fclvXfA_Q9erQDK72lYrRJGKMejZeRS6qwjVd58Cq1pVH7X4VJerMUnmW6sxSXVl6y9PFUgLAP7kkhFPG_gASeHEK
CODEN IETDAI
Cites_doi 10.1039/c2cc17382d
10.1063/1.4974458
10.1109/MMM.2009.932286
10.1088/1674-4926/42/9/092802
10.1109/TED.2017.2654358
10.1088/0256-307x/37/9/097101
10.3390/ma15249067
10.1109/ted.2011.2176947
10.1109/tpel.2020.3031680
10.1109/ted.2023.3294894
10.1038/nature10677
10.1021/acsami.3c03094
10.1109/TED.2021.3099450
10.1109/EDSSC.2019.8754494
10.3390/mi14040764
10.1063/1.4990689
10.1109/jeds.2022.3169811
10.1063/1.3524185
10.1016/j.mtphys.2020.100225
10.7567/1882-0786/aafded
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/TED.2025.3542010
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1557-9646
EndPage 2094
ExternalDocumentID 10_1109_TED_2025_3542010
10900413
Genre orig-research
GrantInformation_xml – fundername: Taiwan Semiconductor Research Institute (TSRI)
  grantid: JDP114-Y1-061
  funderid: 10.13039/501100010606
– fundername: National Science and Technology Council (NSTC) of Taiwan
  grantid: NSTC 113-2221-E-110-053; NSTC 113-2622-E-A49-030; NSTC 113-2124-M-110-003; NSTC 113-2223-E-110-003; NSTC 113-2640-E-110-004
  funderid: 10.13039/501100020950
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
VJK
VOH
AAYXX
CITATION
RIG
7SP
8FD
L7M
ID FETCH-LOGICAL-c247t-e68def5d8879f307b631d8e14c4a7d2e09fd64fd13616d39e9b1e2d4780b9cfd3
IEDL.DBID RIE
ISSN 0018-9383
IngestDate Thu Jul 24 01:45:04 EDT 2025
Tue Jul 01 05:14:58 EDT 2025
Wed Aug 27 02:05:00 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c247t-e68def5d8879f307b631d8e14c4a7d2e09fd64fd13616d39e9b1e2d4780b9cfd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5301-6693
0009-0003-4698-4842
PQID 3185331542
PQPubID 85466
PageCount 5
ParticipantIDs proquest_journals_3185331542
crossref_primary_10_1109_TED_2025_3542010
ieee_primary_10900413
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-04-01
PublicationDateYYYYMMDD 2025-04-01
PublicationDate_xml – month: 04
  year: 2025
  text: 2025-04-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on electron devices
PublicationTitleAbbrev TED
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References Yamada (ref16) 2017; 110
ref12
ref20
ref11
ref10
ref21
Deng (ref14) 2023; 15
ref2
Ando (ref17) 2019; 12
ref1
Wang (ref13) 2012; 48
ref19
ref8
ref7
ref9
ref4
ref3
ref6
ref5
Zhu (ref18)
Yamada (ref15) 2017; 121
References_xml – volume: 48
  start-page: 2325
  issue: 17
  year: 2012
  ident: ref13
  article-title: Decomposition of CO2 to carbon and oxygen under mild conditions over a zinc-modified zeolite
  publication-title: Chem. Commun.
  doi: 10.1039/c2cc17382d
– volume: 121
  issue: 3
  year: 2017
  ident: ref15
  article-title: Comprehensive study on initial thermal oxidation of GaN(0001) surface and subsequent oxide growth in dry oxygen ambient
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4974458
– ident: ref21
  doi: 10.1109/MMM.2009.932286
– ident: ref4
  doi: 10.1088/1674-4926/42/9/092802
– ident: ref20
  doi: 10.1109/TED.2017.2654358
– ident: ref11
  doi: 10.1088/0256-307x/37/9/097101
– ident: ref19
  doi: 10.3390/ma15249067
– ident: ref5
  doi: 10.1109/ted.2011.2176947
– ident: ref2
  doi: 10.1109/tpel.2020.3031680
– ident: ref7
  doi: 10.1109/ted.2023.3294894
– ident: ref3
  doi: 10.1038/nature10677
– volume: 15
  start-page: 25058
  issue: 20
  year: 2023
  ident: ref14
  article-title: Effective suppression of amorphous Ga2O and related deep levels on the GaN surface by high-temperature remote plasma pretreatments in GaN-based metal–insulator–semiconductor electronic devices
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.3c03094
– ident: ref9
  doi: 10.1109/TED.2021.3099450
– ident: ref12
  doi: 10.1109/EDSSC.2019.8754494
– ident: ref1
  doi: 10.3390/mi14040764
– volume: 110
  issue: 26
  year: 2017
  ident: ref16
  article-title: Improved interface properties of GaN-based metal-oxide-semiconductor devices with thin Ga-oxide interlayers
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4990689
– ident: ref6
  doi: 10.1109/jeds.2022.3169811
– start-page: 1
  volume-title: Proc. IEEE Int. Rel. Phys. Symp. (IRPS)
  ident: ref18
  article-title: Threshold voltage shift and interface/border trapping mechanism in Al2O3/AlGaN/GaN MOSHEMTs
– ident: ref8
  doi: 10.1063/1.3524185
– ident: ref10
  doi: 10.1016/j.mtphys.2020.100225
– volume: 12
  issue: 2
  year: 2019
  ident: ref17
  article-title: Improved operation stability of Al2O3/AlGaN/GaN MOS high-electron-mobility transistors grown on GaN substrates
  publication-title: Appl. Phys. Exp.
  doi: 10.7567/1882-0786/aafded
SSID ssj0016442
Score 2.4636214
Snippet We successfully demonstrated a 72% reduction in current collapse under high-field driving conditions (<inline-formula> <tex-math notation="LaTeX">{V}_{\text...
We successfully demonstrated a 72% reduction in current collapse under high-field driving conditions ([Formula Omitted] V) for AlGaN/GaN MISHEMT using...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 2090
SubjectTerms Aluminum gallium nitride
Aluminum gallium nitrides
Aluminum oxide
Al₂O₃/GaN interface
Annealing
Collapse
Conduction bands
Current leakage
Driving conditions
Gallium nitrides
HEMTs
high-electron mobility transistors
Hopping conduction
Leakage current
Logic gates
Low temperature
Nitrogen
normally-on AlGaN/GaN
Performance evaluation
Photoelectrons
Plasma temperature
Plasmas
reduced current collapse
Spectrum analysis
supercritical fluid (SCF) treatment
Supercritical fluids
Surface treatment
Transconductance
Wide band gap semiconductors
X ray photoelectron spectroscopy
Title Effective Reduction of Current Collapse in AlGaN/GaN MISHEMT via Low-Temperature Nitriding Treatment
URI https://ieeexplore.ieee.org/document/10900413
https://www.proquest.com/docview/3185331542
Volume 72
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA-6kx78nDidkoMXD93aJv3IcYhziutBN9itpM0rDKUdW6fgX-9L08pUBA-FHpoS8sv7ynvvF0KuPDQKNgOwlOQYoKBJs5IE5TEL0HdWoZCeo3uHx5E_mvKHmTerm9WrXhgAqIrPoKdfq1y-KtK1Pirr6yJCm-s7arcxcjPNWl8pAzTshhrcQQnGuKvJSdqijzoAI0HX6zGP6-zvNxtUXarySxNX5mW4T6JmYqaq5KW3LpNe-vGDs_HfMz8ge7WjSQdmZxySLciPyO4G_eAxUYa6GPUdfdIMrhojWmS05myi-lBBLlZA5zkdvN7JqI8PHd8_j27HE_o2l_SxeLcmgJ63YWam0bxczrU1pJOmgL1NpsPbyc3Iqm9dsFKXB6UFfqggQ5zCQGSoARKfOSoEh6dcBsoFW2TK55lymO_4igkQiQOu4kFoJyLNFDshrbzI4ZTQUDO9gBJBgp6AL0WYMSdlyuXApPR86JDrBod4Ycg14ioosUWMmMUas7jGrEPaelk3vjMr2iHdBrm4Fr9VrFvCGUPv0D37Y9g52dF_NzU4XdIql2u4QPeiTC6rbfUJKNPKbg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELYQDMDAG1GeHlgY0sax8_CIUKGFNgMEiS1y4otUgdqqTUHi13OOE8RDSAyRMiSKlc--785395mQcx9JweUAjlYCAxSkNCfLcD0WIfrOOpLKZ6Z3eBgHvUdx--Q_1c3qVS8MAFTFZ9A2t1UuX0_yhdkq65giQleYM2pXkPh9Ztu1PpMGSO1WHJzhGsbIq8lKurKDVgBjQc9vc1-Y_O83FqqOVflliyuCud4kcTM0W1fy3F6UWTt__6Ha-O-xb5GN2tWkl3ZubJMlGO-Q9S8ChLtEW_FitHj03mi4GpTopKC1ahM12wpqOgc6GtPLlxsVd_Ciw_5DrztM6OtI0cHkzUkAfW-rzUzjUTkbGT6kSVPCvkcer7vJVc-pz11wck-EpQNBpKFApKJQFmgDsoAzHQETuVCh9sCVhQ5EoRkPWKC5BJkx8LQIIzeTeaH5PlkeT8ZwQGhktF5AyzBDXyBQMio4y7n2BHCl_ABa5KLBIZ1aeY20CktcmSJmqcEsrTFrkT3zW788Z_9oixw3yKX1Apynpimcc_QPvcM_Xjsjq71kOEgH_fjuiKyZL9mKnGOyXM4WcILORpmdVlPsA-W0zbc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effective+Reduction+of+Current+Collapse+in+AlGaN%2FGaN+MISHEMT+via+Low-Temperature+Nitriding+Treatment&rft.jtitle=IEEE+transactions+on+electron+devices&rft.au=Sheng-Yao%2C+Chou&rft.au=Yan-Chieh%2C+Chen&rft.au=Cheng-Hsien%2C+Lin&rft.au=Yan-Lin%2C+Chen&rft.date=2025-04-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0018-9383&rft.eissn=1557-9646&rft.volume=72&rft.issue=4&rft.spage=2090&rft_id=info:doi/10.1109%2FTED.2025.3542010&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9383&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9383&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9383&client=summon