Effective Reduction of Current Collapse in AlGaN/GaN MISHEMT via Low-Temperature Nitriding Treatment
We successfully demonstrated a 72% reduction in current collapse under high-field driving conditions (<inline-formula> <tex-math notation="LaTeX">{V}_{\text {D}} =300 </tex-math></inline-formula> V) for AlGaN/GaN MISHEMT using low-temperature supercritical fluid nit...
Saved in:
Published in | IEEE transactions on electron devices Vol. 72; no. 4; pp. 2090 - 2094 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.04.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We successfully demonstrated a 72% reduction in current collapse under high-field driving conditions (<inline-formula> <tex-math notation="LaTeX">{V}_{\text {D}} =300 </tex-math></inline-formula> V) for AlGaN/GaN MISHEMT using low-temperature supercritical fluid nitridation (SCFN) treatment at <inline-formula> <tex-math notation="LaTeX">180~^{\circ } </tex-math></inline-formula>C for 1 h. A significant improvement in the off-state (<inline-formula> <tex-math notation="LaTeX">{V}_{\text {G}}= -10 </tex-math></inline-formula> V) gate leakage current was observed in MISHEMT with SCFN treatment, resulting in a high breakdown voltage (BV) capability of up to <inline-formula> <tex-math notation="LaTeX">{V}_{\text {D}}=710 </tex-math></inline-formula> V (at <inline-formula> <tex-math notation="LaTeX">1~\mu </tex-math></inline-formula>A/mm), compared to only <inline-formula> <tex-math notation="LaTeX">{V}_{\text {D}}=110 </tex-math></inline-formula> V without SCFN. Furthermore, in terms of characteristics, the device was improved with a 4.6% increase in maximum drain current (<inline-formula> <tex-math notation="LaTeX">{I}_{\text {D},\max } </tex-math></inline-formula>), a 2.9% increase in maximum transconductance (<inline-formula> <tex-math notation="LaTeX">{G}_{\text {m},\max } </tex-math></inline-formula>), and an 11.1% decrease in drain-source on resistance [<inline-formula> <tex-math notation="LaTeX">{R}_{\text {DS}} </tex-math></inline-formula>(on)]. These improvements can be attributed to the repairs of dangling bonds on the AlGaN surface and the elimination of the Al2O3/AlGaN interface traps, which collectively lead to improved performance and stability. Based on the abovementioned results, the X-ray photoelectron spectroscopy (XPS), conduction band edge of defect state density (<inline-formula> <tex-math notation="LaTeX">{D}_{\text {it}} </tex-math></inline-formula>), and gate leakage trap-related hopping conduction mechanism were analyzed to explain the phenomenon. |
---|---|
AbstractList | We successfully demonstrated a 72% reduction in current collapse under high-field driving conditions ([Formula Omitted] V) for AlGaN/GaN MISHEMT using low-temperature supercritical fluid nitridation (SCFN) treatment at [Formula Omitted]C for 1 h. A significant improvement in the off-state ([Formula Omitted] V) gate leakage current was observed in MISHEMT with SCFN treatment, resulting in a high breakdown voltage (BV) capability of up to [Formula Omitted] V (at [Formula Omitted]A/mm), compared to only [Formula Omitted] V without SCFN. Furthermore, in terms of characteristics, the device was improved with a 4.6% increase in maximum drain current ([Formula Omitted]), a 2.9% increase in maximum transconductance ([Formula Omitted]), and an 11.1% decrease in drain-source on resistance [[Formula Omitted](on)]. These improvements can be attributed to the repairs of dangling bonds on the AlGaN surface and the elimination of the Al2O3/AlGaN interface traps, which collectively lead to improved performance and stability. Based on the abovementioned results, the X-ray photoelectron spectroscopy (XPS), conduction band edge of defect state density ([Formula Omitted]), and gate leakage trap-related hopping conduction mechanism were analyzed to explain the phenomenon. We successfully demonstrated a 72% reduction in current collapse under high-field driving conditions (<inline-formula> <tex-math notation="LaTeX">{V}_{\text {D}} =300 </tex-math></inline-formula> V) for AlGaN/GaN MISHEMT using low-temperature supercritical fluid nitridation (SCFN) treatment at <inline-formula> <tex-math notation="LaTeX">180~^{\circ } </tex-math></inline-formula>C for 1 h. A significant improvement in the off-state (<inline-formula> <tex-math notation="LaTeX">{V}_{\text {G}}= -10 </tex-math></inline-formula> V) gate leakage current was observed in MISHEMT with SCFN treatment, resulting in a high breakdown voltage (BV) capability of up to <inline-formula> <tex-math notation="LaTeX">{V}_{\text {D}}=710 </tex-math></inline-formula> V (at <inline-formula> <tex-math notation="LaTeX">1~\mu </tex-math></inline-formula>A/mm), compared to only <inline-formula> <tex-math notation="LaTeX">{V}_{\text {D}}=110 </tex-math></inline-formula> V without SCFN. Furthermore, in terms of characteristics, the device was improved with a 4.6% increase in maximum drain current (<inline-formula> <tex-math notation="LaTeX">{I}_{\text {D},\max } </tex-math></inline-formula>), a 2.9% increase in maximum transconductance (<inline-formula> <tex-math notation="LaTeX">{G}_{\text {m},\max } </tex-math></inline-formula>), and an 11.1% decrease in drain-source on resistance [<inline-formula> <tex-math notation="LaTeX">{R}_{\text {DS}} </tex-math></inline-formula>(on)]. These improvements can be attributed to the repairs of dangling bonds on the AlGaN surface and the elimination of the Al2O3/AlGaN interface traps, which collectively lead to improved performance and stability. Based on the abovementioned results, the X-ray photoelectron spectroscopy (XPS), conduction band edge of defect state density (<inline-formula> <tex-math notation="LaTeX">{D}_{\text {it}} </tex-math></inline-formula>), and gate leakage trap-related hopping conduction mechanism were analyzed to explain the phenomenon. |
Author | Chen, Yan-Chieh Lin, Cheng-Hsien Chen, Yan-Lin Chen, Hsin-Chu Chang, Ting-Chang Chou, Sheng-Yao Wu, Shuo-Bin |
Author_xml | – sequence: 1 givenname: Sheng-Yao surname: Chou fullname: Chou, Sheng-Yao organization: Department of Materials and Optoelectronic Science, National Sun Yat-sen University, Kaohsiung, Taiwan – sequence: 2 givenname: Yan-Chieh surname: Chen fullname: Chen, Yan-Chieh organization: Institute of Advanced Semiconductor Packaging and Testing, National Sun Yat-sen University, Kaohsiung, Taiwan – sequence: 3 givenname: Cheng-Hsien surname: Lin fullname: Lin, Cheng-Hsien organization: Department of Physics, National Sun Yat-Sen University, Kaohsiung, Taiwan – sequence: 4 givenname: Yan-Lin surname: Chen fullname: Chen, Yan-Lin organization: Master Program in Semiconductor and Green Technology, National Chung Hsing University, Taichung, Taiwan – sequence: 5 givenname: Shuo-Bin surname: Wu fullname: Wu, Shuo-Bin organization: Institute of Advanced Semiconductor Packaging and Testing, National Sun Yat-sen University, Kaohsiung, Taiwan – sequence: 6 givenname: Hsin-Chu orcidid: 0009-0003-4698-4842 surname: Chen fullname: Chen, Hsin-Chu email: chenhc@mail.nsysu.edu.tw organization: Institute of Advanced Semiconductor Packaging and Testing and the Institute of Innovative Semiconductor Manufacturing, National Sun Yat-sen University, Kaohsiung, Taiwan – sequence: 7 givenname: Ting-Chang orcidid: 0000-0002-5301-6693 surname: Chang fullname: Chang, Ting-Chang organization: Department of Physics, College of Semiconductor and Advanced Technology Research, National Sun Yatsen University, Kaohsiung, Taiwan |
BookMark | eNpNkM9rwjAUx8NwMHW777BDYOdq0qRpc5SuU0EdbN05xOZlVGrbpa1j__0ietjh8d6D7w_4TNCobmpA6JGSGaVEzvPsZRaSMJqxiIeEkhs0plEUB1JwMUJjQmgSSJawOzTpuoN_BefhGJnMWij68gT4Hczgr6bGjcXp4BzUPU6bqtJtB7is8aJa6t3cD96uP1bZNsenUuNN8xPkcGzB6X5wgHdl70pT1l84d6D7o0-5R7dWVx08XPcUfb5meboKNm_LdbrYBEXI4z4AkRiwkUmSWFpG4r1g1CRAecF1bEIg0hrBraFMUGGYBLmnEBoeJ2QvC2vYFD1fclvXfA_Q9erQDK72lYrRJGKMejZeRS6qwjVd58Cq1pVH7X4VJerMUnmW6sxSXVl6y9PFUgLAP7kkhFPG_gASeHEK |
CODEN | IETDAI |
Cites_doi | 10.1039/c2cc17382d 10.1063/1.4974458 10.1109/MMM.2009.932286 10.1088/1674-4926/42/9/092802 10.1109/TED.2017.2654358 10.1088/0256-307x/37/9/097101 10.3390/ma15249067 10.1109/ted.2011.2176947 10.1109/tpel.2020.3031680 10.1109/ted.2023.3294894 10.1038/nature10677 10.1021/acsami.3c03094 10.1109/TED.2021.3099450 10.1109/EDSSC.2019.8754494 10.3390/mi14040764 10.1063/1.4990689 10.1109/jeds.2022.3169811 10.1063/1.3524185 10.1016/j.mtphys.2020.100225 10.7567/1882-0786/aafded |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD L7M |
DOI | 10.1109/TED.2025.3542010 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1557-9646 |
EndPage | 2094 |
ExternalDocumentID | 10_1109_TED_2025_3542010 10900413 |
Genre | orig-research |
GrantInformation_xml | – fundername: Taiwan Semiconductor Research Institute (TSRI) grantid: JDP114-Y1-061 funderid: 10.13039/501100010606 – fundername: National Science and Technology Council (NSTC) of Taiwan grantid: NSTC 113-2221-E-110-053; NSTC 113-2622-E-A49-030; NSTC 113-2124-M-110-003; NSTC 113-2223-E-110-003; NSTC 113-2640-E-110-004 funderid: 10.13039/501100020950 |
GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACKIV ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 VJK VOH AAYXX CITATION RIG 7SP 8FD L7M |
ID | FETCH-LOGICAL-c247t-e68def5d8879f307b631d8e14c4a7d2e09fd64fd13616d39e9b1e2d4780b9cfd3 |
IEDL.DBID | RIE |
ISSN | 0018-9383 |
IngestDate | Thu Jul 24 01:45:04 EDT 2025 Tue Jul 01 05:14:58 EDT 2025 Wed Aug 27 02:05:00 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c247t-e68def5d8879f307b631d8e14c4a7d2e09fd64fd13616d39e9b1e2d4780b9cfd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-5301-6693 0009-0003-4698-4842 |
PQID | 3185331542 |
PQPubID | 85466 |
PageCount | 5 |
ParticipantIDs | proquest_journals_3185331542 crossref_primary_10_1109_TED_2025_3542010 ieee_primary_10900413 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-04-01 |
PublicationDateYYYYMMDD | 2025-04-01 |
PublicationDate_xml | – month: 04 year: 2025 text: 2025-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on electron devices |
PublicationTitleAbbrev | TED |
PublicationYear | 2025 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | Yamada (ref16) 2017; 110 ref12 ref20 ref11 ref10 ref21 Deng (ref14) 2023; 15 ref2 Ando (ref17) 2019; 12 ref1 Wang (ref13) 2012; 48 ref19 ref8 ref7 ref9 ref4 ref3 ref6 ref5 Zhu (ref18) Yamada (ref15) 2017; 121 |
References_xml | – volume: 48 start-page: 2325 issue: 17 year: 2012 ident: ref13 article-title: Decomposition of CO2 to carbon and oxygen under mild conditions over a zinc-modified zeolite publication-title: Chem. Commun. doi: 10.1039/c2cc17382d – volume: 121 issue: 3 year: 2017 ident: ref15 article-title: Comprehensive study on initial thermal oxidation of GaN(0001) surface and subsequent oxide growth in dry oxygen ambient publication-title: J. Appl. Phys. doi: 10.1063/1.4974458 – ident: ref21 doi: 10.1109/MMM.2009.932286 – ident: ref4 doi: 10.1088/1674-4926/42/9/092802 – ident: ref20 doi: 10.1109/TED.2017.2654358 – ident: ref11 doi: 10.1088/0256-307x/37/9/097101 – ident: ref19 doi: 10.3390/ma15249067 – ident: ref5 doi: 10.1109/ted.2011.2176947 – ident: ref2 doi: 10.1109/tpel.2020.3031680 – ident: ref7 doi: 10.1109/ted.2023.3294894 – ident: ref3 doi: 10.1038/nature10677 – volume: 15 start-page: 25058 issue: 20 year: 2023 ident: ref14 article-title: Effective suppression of amorphous Ga2O and related deep levels on the GaN surface by high-temperature remote plasma pretreatments in GaN-based metal–insulator–semiconductor electronic devices publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.3c03094 – ident: ref9 doi: 10.1109/TED.2021.3099450 – ident: ref12 doi: 10.1109/EDSSC.2019.8754494 – ident: ref1 doi: 10.3390/mi14040764 – volume: 110 issue: 26 year: 2017 ident: ref16 article-title: Improved interface properties of GaN-based metal-oxide-semiconductor devices with thin Ga-oxide interlayers publication-title: Appl. Phys. Lett. doi: 10.1063/1.4990689 – ident: ref6 doi: 10.1109/jeds.2022.3169811 – start-page: 1 volume-title: Proc. IEEE Int. Rel. Phys. Symp. (IRPS) ident: ref18 article-title: Threshold voltage shift and interface/border trapping mechanism in Al2O3/AlGaN/GaN MOSHEMTs – ident: ref8 doi: 10.1063/1.3524185 – ident: ref10 doi: 10.1016/j.mtphys.2020.100225 – volume: 12 issue: 2 year: 2019 ident: ref17 article-title: Improved operation stability of Al2O3/AlGaN/GaN MOS high-electron-mobility transistors grown on GaN substrates publication-title: Appl. Phys. Exp. doi: 10.7567/1882-0786/aafded |
SSID | ssj0016442 |
Score | 2.4636214 |
Snippet | We successfully demonstrated a 72% reduction in current collapse under high-field driving conditions (<inline-formula> <tex-math notation="LaTeX">{V}_{\text... We successfully demonstrated a 72% reduction in current collapse under high-field driving conditions ([Formula Omitted] V) for AlGaN/GaN MISHEMT using... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 2090 |
SubjectTerms | Aluminum gallium nitride Aluminum gallium nitrides Aluminum oxide Al₂O₃/GaN interface Annealing Collapse Conduction bands Current leakage Driving conditions Gallium nitrides HEMTs high-electron mobility transistors Hopping conduction Leakage current Logic gates Low temperature Nitrogen normally-on AlGaN/GaN Performance evaluation Photoelectrons Plasma temperature Plasmas reduced current collapse Spectrum analysis supercritical fluid (SCF) treatment Supercritical fluids Surface treatment Transconductance Wide band gap semiconductors X ray photoelectron spectroscopy |
Title | Effective Reduction of Current Collapse in AlGaN/GaN MISHEMT via Low-Temperature Nitriding Treatment |
URI | https://ieeexplore.ieee.org/document/10900413 https://www.proquest.com/docview/3185331542 |
Volume | 72 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA-6kx78nDidkoMXD93aJv3IcYhziutBN9itpM0rDKUdW6fgX-9L08pUBA-FHpoS8sv7ynvvF0KuPDQKNgOwlOQYoKBJs5IE5TEL0HdWoZCeo3uHx5E_mvKHmTerm9WrXhgAqIrPoKdfq1y-KtK1Pirr6yJCm-s7arcxcjPNWl8pAzTshhrcQQnGuKvJSdqijzoAI0HX6zGP6-zvNxtUXarySxNX5mW4T6JmYqaq5KW3LpNe-vGDs_HfMz8ge7WjSQdmZxySLciPyO4G_eAxUYa6GPUdfdIMrhojWmS05myi-lBBLlZA5zkdvN7JqI8PHd8_j27HE_o2l_SxeLcmgJ63YWam0bxczrU1pJOmgL1NpsPbyc3Iqm9dsFKXB6UFfqggQ5zCQGSoARKfOSoEh6dcBsoFW2TK55lymO_4igkQiQOu4kFoJyLNFDshrbzI4ZTQUDO9gBJBgp6AL0WYMSdlyuXApPR86JDrBod4Ycg14ioosUWMmMUas7jGrEPaelk3vjMr2iHdBrm4Fr9VrFvCGUPv0D37Y9g52dF_NzU4XdIql2u4QPeiTC6rbfUJKNPKbg |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELYQDMDAG1GeHlgY0sax8_CIUKGFNgMEiS1y4otUgdqqTUHi13OOE8RDSAyRMiSKlc--785395mQcx9JweUAjlYCAxSkNCfLcD0WIfrOOpLKZ6Z3eBgHvUdx--Q_1c3qVS8MAFTFZ9A2t1UuX0_yhdkq65giQleYM2pXkPh9Ztu1PpMGSO1WHJzhGsbIq8lKurKDVgBjQc9vc1-Y_O83FqqOVflliyuCud4kcTM0W1fy3F6UWTt__6Ha-O-xb5GN2tWkl3ZubJMlGO-Q9S8ChLtEW_FitHj03mi4GpTopKC1ahM12wpqOgc6GtPLlxsVd_Ciw_5DrztM6OtI0cHkzUkAfW-rzUzjUTkbGT6kSVPCvkcer7vJVc-pz11wck-EpQNBpKFApKJQFmgDsoAzHQETuVCh9sCVhQ5EoRkPWKC5BJkx8LQIIzeTeaH5PlkeT8ZwQGhktF5AyzBDXyBQMio4y7n2BHCl_ABa5KLBIZ1aeY20CktcmSJmqcEsrTFrkT3zW788Z_9oixw3yKX1Apynpimcc_QPvcM_Xjsjq71kOEgH_fjuiKyZL9mKnGOyXM4WcILORpmdVlPsA-W0zbc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effective+Reduction+of+Current+Collapse+in+AlGaN%2FGaN+MISHEMT+via+Low-Temperature+Nitriding+Treatment&rft.jtitle=IEEE+transactions+on+electron+devices&rft.au=Sheng-Yao%2C+Chou&rft.au=Yan-Chieh%2C+Chen&rft.au=Cheng-Hsien%2C+Lin&rft.au=Yan-Lin%2C+Chen&rft.date=2025-04-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0018-9383&rft.eissn=1557-9646&rft.volume=72&rft.issue=4&rft.spage=2090&rft_id=info:doi/10.1109%2FTED.2025.3542010&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9383&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9383&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9383&client=summon |