Effective Reduction of Current Collapse in AlGaN/GaN MISHEMT via Low-Temperature Nitriding Treatment
We successfully demonstrated a 72% reduction in current collapse under high-field driving conditions (<inline-formula> <tex-math notation="LaTeX">{V}_{\text {D}} =300 </tex-math></inline-formula> V) for AlGaN/GaN MISHEMT using low-temperature supercritical fluid nit...
Saved in:
Published in | IEEE transactions on electron devices Vol. 72; no. 4; pp. 2090 - 2094 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.04.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | We successfully demonstrated a 72% reduction in current collapse under high-field driving conditions (<inline-formula> <tex-math notation="LaTeX">{V}_{\text {D}} =300 </tex-math></inline-formula> V) for AlGaN/GaN MISHEMT using low-temperature supercritical fluid nitridation (SCFN) treatment at <inline-formula> <tex-math notation="LaTeX">180~^{\circ } </tex-math></inline-formula>C for 1 h. A significant improvement in the off-state (<inline-formula> <tex-math notation="LaTeX">{V}_{\text {G}}= -10 </tex-math></inline-formula> V) gate leakage current was observed in MISHEMT with SCFN treatment, resulting in a high breakdown voltage (BV) capability of up to <inline-formula> <tex-math notation="LaTeX">{V}_{\text {D}}=710 </tex-math></inline-formula> V (at <inline-formula> <tex-math notation="LaTeX">1~\mu </tex-math></inline-formula>A/mm), compared to only <inline-formula> <tex-math notation="LaTeX">{V}_{\text {D}}=110 </tex-math></inline-formula> V without SCFN. Furthermore, in terms of characteristics, the device was improved with a 4.6% increase in maximum drain current (<inline-formula> <tex-math notation="LaTeX">{I}_{\text {D},\max } </tex-math></inline-formula>), a 2.9% increase in maximum transconductance (<inline-formula> <tex-math notation="LaTeX">{G}_{\text {m},\max } </tex-math></inline-formula>), and an 11.1% decrease in drain-source on resistance [<inline-formula> <tex-math notation="LaTeX">{R}_{\text {DS}} </tex-math></inline-formula>(on)]. These improvements can be attributed to the repairs of dangling bonds on the AlGaN surface and the elimination of the Al2O3/AlGaN interface traps, which collectively lead to improved performance and stability. Based on the abovementioned results, the X-ray photoelectron spectroscopy (XPS), conduction band edge of defect state density (<inline-formula> <tex-math notation="LaTeX">{D}_{\text {it}} </tex-math></inline-formula>), and gate leakage trap-related hopping conduction mechanism were analyzed to explain the phenomenon. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 0018-9383 1557-9646 |
DOI: | 10.1109/TED.2025.3542010 |