MEMS Air-Damped Isolator for Dual-Axis Micromirrors: Broad-Range Frequency Vibration Isolation

The fracture failure of dual-axis micromirrors under the AEC-Q100 qualification test could not be mitigated by structural designs alone due to the need for compatibility in bending and torsional stiffness. To address this, a passive MEMS vibration isolator was proposed to protect the micromirrors wi...

Full description

Saved in:
Bibliographic Details
Published inJournal of microelectromechanical systems Vol. 34; no. 3; pp. 260 - 267
Main Authors Ran, Longqi, Zhou, Wu, He, Jiangbo, Wu, Jiahao, Wang, Yan, Gong, Xuhui
Format Journal Article
LanguageEnglish
Published New York IEEE 01.06.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The fracture failure of dual-axis micromirrors under the AEC-Q100 qualification test could not be mitigated by structural designs alone due to the need for compatibility in bending and torsional stiffness. To address this, a passive MEMS vibration isolator was proposed to protect the micromirrors within a broad frequency range of 20 Hz to 1200 Hz, unlike conventional designs limited to a fixed frequency. The proposed method was based on a two-degree-of-freedom (DOF) micromirror-isolator system, in contrast to the single-DOF systems employed in existing methods. The isolator's stiffness was matched to the micromirror's stiffness to maximize the mirror plane's movement, and an air damping mechanism was incorporated using a <inline-formula> <tex-math notation="LaTeX">20~\mu </tex-math></inline-formula>m gap to control the dynamic response time. The designed isolator was fabricated using a novel SOI-on-glass process and tested on a high-precision vibration shaker equipped with a laser Doppler vibrometer. Results showed that the proposed isolator attenuated vibration amplitude by 25.55 dB, closely aligning with the design value of 24.89 dB. Additionally, an automotive-grade vibration test demonstrated successful isolation under a 50g vibration within the 20 Hz to 1200 Hz frequency range, without introducing parasitic modes that could disrupt the micromirror's operational modes.[2024-0220]
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1057-7157
1941-0158
DOI:10.1109/JMEMS.2025.3543166