Efficient Iterative Solution of Combined Source Integral Equation Using Characteristic Basis Function Method With Initial Guess

Using only the RWG functions, the combined source integral equation (CSIE) with weak form combined source condition can achieve fine accuracy and fast iterative convergence for conductor objects. However, compared with a conventional integral equation in the method of moments (MoM), the conventional...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal on multiscale and multiphysics computational techniques Vol. 9; pp. 142 - 148
Main Authors Dong, Zhiwen, Chen, Xinlei, Gao, Fan, Gu, Changqing, Li, Zhuo, Yang, Wu, Lu, Weibing
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Using only the RWG functions, the combined source integral equation (CSIE) with weak form combined source condition can achieve fine accuracy and fast iterative convergence for conductor objects. However, compared with a conventional integral equation in the method of moments (MoM), the conventional CSIE involves more matrices and more complex numerical processing, and these make the CSIE inefficient, especially for multiple excitation problems. In this article, a characteristic basis function (CBF)-based CSIE with initial guess is proposed to mitigate this problem. The CBF is employed to reduce the number of unknowns as well as the storage consumptions and iteration time. In the meantime, an initial guess especially for CBFs is proposed to reduce iterations when solving multiple excitation problems. Numerical results are given to demonstrate the performance of the proposed method.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2379-8815
2379-8815
DOI:10.1109/JMMCT.2024.3382725