Can the best management practices resist the combined effects of climate and land-use changes on non-point source pollution control?

Climate and land-use changes have an overlying impact on non-point source (NPS) pollution in river basins. However, the control effect of Best Management Practices (BMPs) for NPS pollution is not yet clear under future scenarios. The Soil and Water Assessment Tool (SWAT) model was coupled with the e...

Full description

Saved in:
Bibliographic Details
Published inThe Science of the total environment Vol. 946; p. 174260
Main Authors Du, Bailin, Wu, Lei, Ruan, Bingnan, Xu, Liujia, Liu, Shuai, Guo, Zongjun
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 10.10.2024
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Climate and land-use changes have an overlying impact on non-point source (NPS) pollution in river basins. However, the control effect of Best Management Practices (BMPs) for NPS pollution is not yet clear under future scenarios. The Soil and Water Assessment Tool (SWAT) model was coupled with the entropy-weighted method, global climate patterns and land-use data to explore the dynamic variations in total nitrogen (TN) and total phosphorus (TP) loads in the Jing River Basin during the baseline (2000−2020) and future periods (2021–2065), evaluate the pollution reduction effectiveness of individual and combined BMPs, and propose practical BMP configurations. Results indicate that a future trend of urban land expansion, particularly in the economic scenario (LU_SSP585), leads to weakened environmental ecosystems, while the sustainable scenario (LU_SSP126) exhibits more balanced land development. The MIROC-ES2L model demonstrates higher Taylor skill scores, forecasted significant increases in precipitation, maximum, and minimum temperatures under the SSP585 scenario. Spatial heterogeneity in TN and TP loads is notable, showing an upward trajectory in the future. The interaction between land-use and climate change has complex effects on TN and TP loads, with land-use-induced TN changes being relatively small (4.6 %) and TP changes substantial (24.3 %). The spatial distribution, under overlying effects, leans towards the influence of climate change, emphasizing its dominant role in TN and TP load variations. Distinct differences exist in the reduction of NPS pollution loads among different BMPs, with combined BMPs demonstrating superior effectiveness. The environmental-cost effectiveness trends of BMPs remain consistent across various future scenarios. RG (Return agricultural land to grass), RG + TT (Terracing), and RG + FR10 (Fertilizer reduction: 10 %) + GW (Grassed waterway) + FS (Filter strip) + TT emerge as the most effective single, double, and multiple BMP combinations, respectively. The results offer valuable insights for preventing and mitigating future NPS pollution risks, optimizing land-use layouts, and enhancing watershed management decisions. [Display omitted] •Climate change rather than land-use change plays a dominant role in spatial variations of TN and TP loads.•The reduction efficiency and cost-effectiveness of single and combined BMPs under diverse scenarios were compared.•Various BMPs show significant differences in reducing NPS pollution, with combined BMPs being more effective.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0048-9697
1879-1026
1879-1026
DOI:10.1016/j.scitotenv.2024.174260