Performance Enhancement Reservoir Computing System Based on Combination of VCESL Optical Feedback and Mutual Injection Structure

In this paper, a novel performance enhancement reservoir computing (RC) system based on the combination of vertical-cavity surface emitting laser (VCSEL) optical feedback and mutual injection (OFAI) structure is proposed and demonstrated numerically. By simultaneously introducing optical feedback an...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal of selected topics in quantum electronics Vol. 31; no. 3: AI/ML Integrated Opto-electronics; pp. 1 - 12
Main Authors Zhu, Pengjin, Wang, Hongxiang, Ji, Yuefeng
Format Journal Article
LanguageEnglish
Published New York IEEE 01.05.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this paper, a novel performance enhancement reservoir computing (RC) system based on the combination of vertical-cavity surface emitting laser (VCSEL) optical feedback and mutual injection (OFAI) structure is proposed and demonstrated numerically. By simultaneously introducing optical feedback and mutual injection structures into the proposed RC system, the nonlinear and high-dimensional mapping capabilities are significantly improved. The proposed system exhibits the best performance in both single task processing mode and parallel processing mode compared to the other 4 RC systems. Specifically, the minimum NMSE of Santa-Fe time series prediction, waveform classification and NARMA-10 task are 0.0011, 1.058<inline-formula><tex-math notation="LaTeX">\times 10^{-8}</tex-math></inline-formula> and 0.101 respectively. Furthermore, since two linear polarization modes coexist in VCSELs, the parallel-polarized and orthogonal-polarized configuration is considered. Numerical results show that in all benchmark tasks, the performance of the orthogonal-polarized configuration is generally better than the parallel-polarized configuration in single task processing mode, and the conclusion is opposite in parallel processing mode, which is related to the coupling mechanism between the two polarization modes. Finally, the effect of different parameters on the system performance is explored in detail. In summary, the proposed system is interesting and valuable in the field of high-speed and low-power neuromorphic photonics.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1077-260X
1558-4542
DOI:10.1109/JSTQE.2024.3480455