Electromagnetic-Circuital-Thermal-Mechanical Multiphysics Numerical Simulation Method for Microwave Circuits

A electromagnetic-circuital-thermal-mechanical mu- ltiphysics numerical method is proposed for the simulation of microwave circuits. The discontinuous Galerkin time-domain (DGTD) method is adopted for electromagnetic simulation. The time-domain finite element method (FEM) is utilized for thermal sim...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal on multiscale and multiphysics computational techniques Vol. 9; pp. 129 - 141
Main Authors Zhang, Huan Huan, Jia, Zheng Lang, Zhang, Peng Fei, Liu, Ying, Jiang, Li Jun, Ding, Da Zhi
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A electromagnetic-circuital-thermal-mechanical mu- ltiphysics numerical method is proposed for the simulation of microwave circuits. The discontinuous Galerkin time-domain (DGTD) method is adopted for electromagnetic simulation. The time-domain finite element method (FEM) is utilized for thermal simulation. The circuit equation is applied for circuit simulation. The mechanical simulation is also carried out by FEM method. A flexible and unified multiphysics field coupling mechanism is constructed to cover various electromagnetic, circuital, thermal and mechanical multiphysics coupling scenarios. Finally, three numerical examples emulating outer space environment, intense electromagnetic pulse (EMP) injection and high power microwave (HPM) illumination are utilized to demonstrate the accuracy, efficiency, and capability of the proposed method. The proposed method provides a versatile and powerful tool for the design and analysis of microwave circuits characterized by intertwined electromagnetic, circuital, thermal and stress behaviors.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2379-8815
2379-8815
DOI:10.1109/JMMCT.2024.3372619