Metallopanstimulin-1 regulates invasion and migration of gastric cancer cells partially through integrin β4
MPS-1 (metallopanstimulin-1), also known as ribosomal protein S27, was overexpressed in gastric cancer cells. However, how MPS-1 contributes to gastric carcinogenesis has not been well characterized. Here, we show that high expression of MPS-1 was observed in gastric cancer tissues and associated wi...
Saved in:
Published in | Carcinogenesis (New York) Vol. 34; no. 12; pp. 2851 - 2860 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
01.12.2013
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | MPS-1 (metallopanstimulin-1), also known as ribosomal protein S27, was overexpressed in gastric cancer cells. However, how MPS-1 contributes to gastric carcinogenesis has not been well characterized. Here, we show that high expression of MPS-1 was observed in gastric cancer tissues and associated with gastric cancer cell metastasis. Alteration of MPS-1 expression regulates invasion and migration of gastric cancer cells both in vitro and in vivo. Furthermore, by using Signal-Net and cluster analyses of microarray data we identified integrin β4 (ITGB4) as a downstream target of MPS-1 that mediates its effects on cell metastasis. Knockdown of MPS-1 expression in gastric cancer cells led to significant reduction of ITGB4 expression at both the RNA and protein levels. Mechanically, we found that overexpression of ITGB4 in MPS-1 knockdown cells largely recovers the ability of invasion and migration. Conversely, knockdown of ITGB4 partially reduced cell invading/migrating ability induced by MPS-1 overexpression. Moreover, MPS-1 and ITGB4 expressions are positively correlated in gastric cancer cell lines and tissues. Finally, the survival analyses show that the expression of MPS-1 and ITGB4 is associated with poor outcomes in gastric cancer patients. Collectively, our findings suggest that MPS-1 regulates cell invasiveness and migration partially through ITGB4 and that MPS-1/ITGB4 signaling axis may serve as therapeutic targets in the treatment of gastric cancer. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0143-3334 1460-2180 |
DOI: | 10.1093/carcin/bgt226 |