Inspecting the Thermoelectric Response and Mechanical Stability of Novel Cobalt‐Based Heusler Alloys: A DFT Insight

The potential of Heusler materials to provide interesting aspects predominantly of vital physical properties along with typical variations has extended their prospects for thermoelectric applicability. Herein, highly precise and high‐throughput density functional theory (DFT) calculations along with...

Full description

Saved in:
Bibliographic Details
Published inphysica status solidi (b) Vol. 259; no. 10
Main Authors Sofi, Shakeel Ahmad, Alshahrani, Thamraa, Morsi, Manal, Gupta, Dinesh C.
Format Journal Article
LanguageEnglish
Published 01.10.2022
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The potential of Heusler materials to provide interesting aspects predominantly of vital physical properties along with typical variations has extended their prospects for thermoelectric applicability. Herein, highly precise and high‐throughput density functional theory (DFT) calculations along with Boltzmann transport simulation scheme are intensely applied to deliver the numerous physical properties of two Cobalt‐based Heusler materials. The geometric structural optimization of both these alloys suitably approves the cubic crystalline geometry at elevated temperatures. The electronic band profile validates the half‐metallic behavior. The fetched density of states and band occupation reflect the ferromagnetic half‐metallic character of the materials. The calculated elastic parameters reveal that the presented set of Heusler materials is mechanically stable holding ductile nature. These cobalt materials exhibit anisotropic performance for both longitudinal and transverse velocities, so these demonstrate directional‐dependent velocities. The utmost significant lattice part of thermal conductivity is accurately figured out by the help of Slack's equation. The current exploration demonstrates spin half metallicity as well as good value of transport parameters, which opens up a route typical for numerous research areas like thermoelectrics and spintronic applicability. Heuslers based on bands at the Fermi energy are different in spin channels. On this criterion, the class of the various Heusler alloys is defined, like metals, half‐metals, etc. Half‐Heuslers consist of only one magnetic sub‐lattice which is due to the atoms present at the octahedral sites. The magnetism leads to the establishment of ferromagnetism in such compounds.
ISSN:0370-1972
1521-3951
DOI:10.1002/pssb.202000474