Human-Like Trajectory Planning Based on Postural Synergistic Kernelized Movement Primitives for Robot-Assisted Rehabilitation

The motor synergy pattern is an intrinsic characteristic found in natural human movements, particularly in the upper limb. It is essential to improve the multijoint coordination ability for stroke patients by integrating the synergy pattern into rehabilitation tasks and trajectory design. However, c...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on human-machine systems Vol. 54; no. 2; pp. 152 - 161
Main Authors Liu, Zemin, Ai, Qingsong, Liu, Haojie, Meng, Wei, Liu, Quan
Format Journal Article
LanguageEnglish
Published New York IEEE 01.04.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The motor synergy pattern is an intrinsic characteristic found in natural human movements, particularly in the upper limb. It is essential to improve the multijoint coordination ability for stroke patients by integrating the synergy pattern into rehabilitation tasks and trajectory design. However, current robot-assisted rehabilitation systems tend to overlook the incorporation of a multijoint synergy model. This article proposes postural synergistic kernelized movement primitives (PSKMP) method for the human-like trajectory planning of robot-assisted upper limb rehabilitation. First, the demonstrated trajectory obtained from the motion capture system is subject to principal component analysis to extract postural synergies. Then, the PSKMP is proposed by kernelizing the postural synergistic subspaces with the kernel treatment to preserve human natural movement characteristics. Finally, the rehabilitation trajectory accord with human motion habits can be generated based on generalized postural synergistic subspaces. This approach has undergone practical validation on an upper limb rehabilitation robot, and the experimental results show that the proposed method enables the generation of human-like trajectories adapted to new task points, in accordance with the natural movement style of human. This method holds great significance in promoting the recovery of coordination ability of stroke patients.
ISSN:2168-2291
2168-2305
DOI:10.1109/THMS.2024.3360111