TextCheater: A Query-Efficient Textual Adversarial Attack in the Hard-Label Setting

Designing a query-efficient attack strategy to generate high-quality adversarial examples under the hard-label black-box setting is a fundamental yet challenging problem, especially in natural language processing (NLP). The process of searching for adversarial examples has many uncertainties (e.g.,...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on dependable and secure computing Vol. 21; no. 4; pp. 3901 - 3916
Main Authors Peng, Hao, Guo, Shixin, Zhao, Dandan, Zhang, Xuhong, Han, Jianmin, Ji, Shouling, Yang, Xing, Zhong, Ming
Format Journal Article
LanguageEnglish
Published Washington IEEE 01.07.2024
IEEE Computer Society
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Designing a query-efficient attack strategy to generate high-quality adversarial examples under the hard-label black-box setting is a fundamental yet challenging problem, especially in natural language processing (NLP). The process of searching for adversarial examples has many uncertainties (e.g., an unknown impact on the target model's prediction of the added perturbation) when confidence scores cannot be accessed, which must be compensated for with a large number of queries. To address this issue, we propose TextCheater, a decision-based metaheuristic search method that performs a query-efficient textual adversarial attack task by prohibiting invalid searches. The strategies of multiple initialization points and Tabu search are also introduced to keep the search process from falling into a local optimum. We apply our approach to three state-of-the-art language models (i.e., BERT, wordLSTM, and wordCNN) across six benchmark datasets and eight real-world commercial sentiment analysis platforms/models. Furthermore, we evaluate the Robustly optimized BERT pretraining Approach (RoBERTa) and models that enhance their robustness by adversarial training on toxicity detection and text classification tasks. The results demonstrate that our method minimizes the number of queries required for crafting plausible adversarial text while outperforming existing attack methods in the attack success rate, fluency of output sentences, and similarity between the original text and its adversary.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1545-5971
1941-0018
DOI:10.1109/TDSC.2023.3339802